Nuprl Lemma : ftc-example2
∀a,b:ℝ.
  (a_∫-b t^3 * cosine(t) dt
  = ((((b^3 - r(6) * b) * sine(b)) - (a^3 - r(6) * a) * sine(a))
    + ((((r(3) * b^2) - r(6)) * cosine(b)) - ((r(3) * a^2) - r(6)) * cosine(a))))
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
cosine: cosine(x), 
sine: sine(x), 
rnexp: x^k1, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rfun: I ⟶ℝ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
ifun: ifun(f;I), 
top: Top, 
real-fun: real-fun(f;a;b), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
subtract: n - m, 
sq_type: SQType(T), 
guard: {T}, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtype_rel: A ⊆r B, 
real: ℝ, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
eq_int: (i =z j), 
int-to-real: r(n), 
rnexp: x^k1, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
real_wf, 
rmul_wf, 
rnexp_wf, 
istype-false, 
istype-le, 
cosine_wf, 
i-member_wf, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
left_endpoint_rccint_lemma, 
istype-void, 
right_endpoint_rccint_lemma, 
req_functionality, 
rmul_functionality, 
rnexp_functionality, 
cosine_functionality, 
req_weakening, 
req_wf, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_wf, 
rsub_wf, 
sine_wf, 
int-to-real_wf, 
rminus_wf, 
radd_wf, 
riiint_wf, 
true_wf, 
member_riiint_lemma, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermSubtract_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
istype-less_than, 
sine_functionality, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
ftc-total-integral, 
integration-by-parts, 
derivative-rnexp, 
derivative-sine, 
derivative-const-mul, 
derivative-minus-minus, 
derivative-cosine, 
rnexp_zero_lemma, 
rminus_functionality, 
derivative-minus, 
derivative-const, 
derivative_functionality, 
rmul-zero-both, 
uiff_transitivity, 
rsub_functionality, 
req_transitivity, 
req_inversion, 
rmul_assoc, 
rmul-int, 
rnexp1, 
rmul-zero, 
itermMultiply_wf, 
itermVar_wf, 
itermMinus_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
dependent_set_memberEquality_alt, 
sqequalRule, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
because_Cache, 
setIsType, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
functionIsType, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
equalityIsType4, 
promote_hyp, 
equalityIsType1, 
multiplyEquality, 
int_eqEquality
Latex:
\mforall{}a,b:\mBbbR{}.
    (a\_\mint{}\msupminus{}b  t\^{}3  *  cosine(t)  dt
    =  ((((b\^{}3  -  r(6)  *  b)  *  sine(b))  -  (a\^{}3  -  r(6)  *  a)  *  sine(a))
        +  ((((r(3)  *  b\^{}2)  -  r(6))  *  cosine(b))  -  ((r(3)  *  a\^{}2)  -  r(6))  *  cosine(a))))
Date html generated:
2019_10_31-AM-06_17_29
Last ObjectModification:
2018_11_08-PM-05_57_17
Theory : reals_2
Home
Index