Nuprl Lemma : fps-exp-linear-coeff
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[x,y:X].
    ∀[r:CRng]. ∀[k:|r|]. ∀[m,n:ℕ].
      ((((k)*atom(x)+atom(y)))^(m)[bag-rep(n;x)] = if (n =z m) then k ↑r m else 0 fi  ∈ |r|) 
    supposing ¬(x = y ∈ X) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-exp: (f)^(n), 
fps-scalar-mul: (c)*f, 
fps-add: (f+g), 
fps-atom: atom(x), 
fps-coeff: f[b], 
bag-rep: bag-rep(n;x), 
deq: EqDecider(T), 
nat: ℕ, 
valueall-type: valueall-type(T), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type, 
equal: s = t ∈ T, 
rng_nexp: e ↑r n, 
crng: CRng, 
rng_zero: 0, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
crng: CRng, 
rng: Rng, 
fps-coeff: f[b], 
fps-one: 1, 
int_upper: {i...}, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
bfalse: ff, 
less_than': less_than'(a;b), 
le: A ≤ B, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
true: True, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
fps-mul: (f*g), 
bag-partitions: bag-partitions(eq;bs), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bag-splits: bag-splits(b), 
list_ind: list_ind, 
bag-rep: bag-rep(n;x), 
primrec: primrec(n;b;c), 
empty-bag: {}, 
nil: [], 
single-bag: {x}, 
cons: [a / b], 
bag-to-set: bag-to-set(eq;bs), 
bag-remove-repeats: bag-remove-repeats(eq;bs), 
list-to-set: list-to-set(eq;L), 
l-union: as ⋃ bs, 
reduce: reduce(f;k;as), 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
power-series: PowerSeries(X;r), 
pi1: fst(t), 
pi2: snd(t), 
so_apply: x[s], 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
fps-atom: atom(x), 
fps-scalar-mul: (c)*f, 
fps-add: (f+g), 
fps-single: <c>, 
bag-eq: bag-eq(eq;as;bs), 
bag-count: (#x in bs), 
bag-all: bag-all(x.p[x];bs), 
count: count(P;L), 
bag-map: bag-map(f;bs), 
bag-reduce: bag-reduce(x,y.f[x; y];zero;bs), 
lt_int: i <z j, 
band: p ∧b q, 
infix_ap: x f y, 
respects-equality: respects-equality(S;T), 
bag-size: #(bs), 
length: ||as||, 
rev_uimplies: rev_uimplies(P;Q), 
nequal: a ≠ b ∈ T , 
nat_plus: ℕ+, 
less_than: a < b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
rng_car_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
istype-universe, 
rng_nexp_zero, 
bag-null-rep, 
rng_zero_wf, 
zero-add, 
nequal-le-implies, 
upper_subtype_nat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
le_wf, 
false_wf, 
rng_nexp_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
list-subtype-bag, 
bag-rep_wf, 
fps-atom_wf, 
fps-scalar-mul_wf, 
fps-add_wf, 
squash_wf, 
true_wf, 
fps-coeff_wf, 
bag_wf, 
power-series_wf, 
fps-exp-zero, 
subtype_rel_self, 
iff_weakening_equal, 
subtract-add-cancel, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
istype-false, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
fps-exp_wf, 
fps-exp-add, 
fps-mul_wf, 
fps-exp-one, 
decidable__equal_int, 
int_subtype_base, 
bag-summation-single, 
rng_plus_wf, 
rng_plus_comm2, 
rng_times_wf, 
empty-bag_wf, 
crng_properties, 
rng_properties, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
nil_wf, 
rng_times_over_plus, 
rng_times_zero, 
rng_plus_zero, 
bag-summation-single-non-zero-no-repeats, 
product-deq_wf, 
bag-deq_wf, 
bag-partitions_wf, 
bag-member_wf, 
bag-member-partitions, 
bag-size_wf, 
bag-append-equal-bag-rep, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
respects-equality-product, 
list_wf, 
subtype-respects-equality, 
bag_qinc, 
bag-eq_wf, 
single-bag_wf, 
assert-bag-eq, 
equal-wf-base, 
set_subtype_base, 
iff_weakening_uiff, 
assert_wf, 
no-repeats-bag-partitions, 
bag-rep-add, 
bag-summation_wf, 
crng_all_properties, 
int_upper_properties, 
rng_nexp_unroll, 
primrec1_lemma, 
cons_bag_empty_lemma, 
member_wf, 
rng_one_wf, 
rng_times_one, 
rng_plus_comm, 
single-valued-bag-single, 
single-valued-bag_wf, 
bag-only_wf2, 
bag_only_single_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
because_Cache, 
functionIsType, 
equalityIstype, 
instantiate, 
universeEquality, 
voidEquality, 
isect_memberEquality, 
hypothesis_subsumption, 
cumulativity, 
promote_hyp, 
dependent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
lambdaEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
addEquality, 
closedConclusion, 
isectIsType, 
intEquality, 
productEquality, 
productIsType, 
independent_pairEquality, 
inlFormation_alt, 
pointwiseFunctionality, 
baseApply, 
inrFormation_alt, 
sqequalBase, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[x,y:X].
        \mforall{}[r:CRng].  \mforall{}[k:|r|].  \mforall{}[m,n:\mBbbN{}].
            ((((k)*atom(x)+atom(y)))\^{}(m)[bag-rep(n;x)]  =  if  (n  =\msubz{}  m)  then  k  \muparrow{}r  m  else  0  fi  ) 
        supposing  \mneg{}(x  =  y) 
    supposing  valueall-type(X)
Date html generated:
2019_10_16-AM-11_34_54
Last ObjectModification:
2018_11_26-PM-03_09_25
Theory : power!series
Home
Index