Nuprl Lemma : q-constraint-negative
∀[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
  (uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;-(y[k - 1]) + ((-1/x k) * q-linear(k - 1;j.x j;y))))) supposing 
     (x k < 0 and 
     (k ≤ ||y||))
Proof
Definitions occuring in Statement : 
q-rel: q-rel(r;x), 
q-linear: q-linear(k;i.X[i];y), 
qless: r < s, 
qdiv: (r/s), 
qmul: r * s, 
qadd: r + s, 
rationals: ℚ, 
select: L[n], 
length: ||as||, 
list: T List, 
nat_plus: ℕ+, 
nat: ℕ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
apply: f a, 
function: x:A ⟶ B[x], 
subtract: n - m, 
minus: -n, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
bnot: ¬bb, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
true: True, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
q-rel: q-rel(r;x), 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
iff: P ⇐⇒ Q, 
bool: 𝔹, 
le: A ≤ B, 
rev_implies: P ⇐ Q, 
unit: Unit, 
it: ⋅, 
qge: a ≥ b, 
qgt: a > b
Lemmas referenced : 
qmul_reverses_qless, 
qmul_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
q-rel_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
q-linear-unroll, 
istype-nat, 
iff_weakening_equal, 
eq_int_wf, 
qadd_wf, 
select_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
length_wf, 
qdiv_wf, 
nat_plus_subtype_nat, 
q-linear_wf, 
qle_witness, 
qle_wf, 
qless_witness, 
qless_wf, 
ifthenelse_wf, 
int-subtype-rationals, 
list_wf, 
nat_plus_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
istype-void, 
qmul_zero_qrng, 
subtype_rel_self, 
qinv_inv_q, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
qmul-preserves-eq, 
equal_wf, 
istype-universe, 
qmul_over_minus_qrng, 
qmul_over_plus_qrng, 
qadd_comm_q, 
qmul-qdiv-cancel3, 
qmul_assoc, 
qmul_one_qrng, 
qmul_preserves_qle, 
qmul_preserves_qle2, 
qle-minus, 
qinv_id_q, 
qle_functionality_wrt_implies, 
qle_weakening_lt_qorder, 
qmul_preserves_qless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
lambdaFormation_alt, 
axiomEquality, 
equalityIstype, 
closedConclusion, 
sqequalBase, 
instantiate, 
universeEquality, 
promote_hyp, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
baseApply, 
intEquality, 
equalityElimination, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[y:\mBbbQ{}  List].
    (uiff(q-rel(r;q-linear(k;j.x  j;y));q-rel(r;-(y[k  -  1])
          +  ((-1/x  k)  *  q-linear(k  -  1;j.x  j;y)))))  supposing 
          (x  k  <  0  and 
          (k  \mleq{}  ||y||))
Date html generated:
2020_05_20-AM-09_27_28
Last ObjectModification:
2020_01_31-AM-11_08_04
Theory : rationals
Home
Index