is mentioned by
[chessboard_example] | |
[list_member_type_wf] | |
[is_list_mem_null] | |
[is_list_mem_split] | |
[is_list_mem_wf] | |
[same_range_sep_inj_eqv] | |
[same_range_sep_wf_inj] | |
[same_range_sep_eqv] | |
[same_range_sep_wf] | |
[card_st_sized_bool] | |
[card_st_vs_boolsize] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[card_boolset_vs_mset] | |
[sized_bool_wf] | |
[boolsize_wf] | |
[sized_mset_wf5] | |
[sized_mset_wf4] | |
[sized_mset_wf3] | |
[sized_mset_wf2] | |
[sized_mset_wf] | |
[msize_wf] | |
[nsub_bij_ooc_invpair] | |
[nsub_inj_ooc_nsub_surj] | |
[nsub_inj_ooc_nsub_bij] | |
[nsub_inj_exteq_nsub_bij] | |
[nsub_surj_ooc_nsub_bij] | |
[nsub_surj_exteq_nsub_bij] | |
[nsub_inj_exteq_nsub_surj] | |
[surj_typing_imp_le] | |
[nsub_surj_imp_a_rev_inj2] | |
[nsub_bij_least_preimage_inverse] | |
[nsub_surj_imp_a_rev_inj] | |
Thm* IsEqFun(B;e) Thm* Thm* (a:, f:(a onto B). (y.least x:. (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
[dedekind_imp_nonfin] | |
[dededing_imp_unb_inf] | |
[dedekind_inf_imp_inf] | |
[compose_iter_inverses] | |
[compose_iter_bijection] | |
[compose_iter_surjection] | |
[compose_iter_injection2] | |
[iter_perm_cycles_uniform2] | |
[iter_perm_cycles_uniform] | |
[compose_iter_inj_cycles] | |
[compose_iter_injection] | |
[compose_iter_pos_comp2] | |
[compose_iter_pos2] | |
[compose_iter_prod2] | |
[compose_iter_prod] | |
[compose_iter_sum_comp_rw] | |
[compose_iter_sum_rw] | |
[compose_iter_sum_comp] | |
[compose_iter_sum] | |
[compose_iter_id] | |
[compose_iter_pos_comp] | |
[compose_iter_point_id] | |
[compose_iter_pos] | |
[compose_iter_once] | |
[compose_iter_zero_id] | |
[compose_iter_zero] | |
[card_nat_vs_nat_tuple] | |
[compose_iter_wf] | |
[next_nat_pair_not_zeroes] | |
[inv_pair_inv2] | |
[inv_pair_inv] | |
[card_sigma_vs_nsub_sigma] | |
[nsub_add_rw] | |
[card_curry_simple2] | |
[exp_exp_reduce2] | |
[exp_exp_reduce1] | |
[card_fun_vs_nsub_exp] | |
[card_pi_vs_nsub_pi] | |
[nsub_inj_factorial] | |
[nsub_inj_factorial_tail] | |
[nsub_inj_factorial2] | |
[finite_indep_sum_card] | |
[mul_assoc_from_cross_assoc] | |
[nsub_mul_rw] | |
[nsub_mul] | |
[nsub_add] | |
[intseg_split] | |
[nsub_intiseg_rw] | |
[intiseg_intseg_plus] | |
[intiseg_intseg] | |
[nsub_intseg_rw] | |
[nsub_intseg] | |
[intseg_shift_by] | |
[intseg_shift] | |
[intseg_void] | |
[card_sigma_distr] | |
[card_curry] | |
[card_curry_simple] | |
[function_functionality_wrt_one_one_corr] | |
[function_functionality_wrt_one_one_corr_B] | |
[card_pi] | |
Thm* a<b ((i:{a..b}B(i)) ~ ((i:{a..(b-1)}B(i))+B(b-1))) | [card_split_end_sum_intseg_family] |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))+(i:{c..b}B(i))) | [card_split_sum_intseg_family] |
[card_split_decbl_squash] | |
[card_nsub0_union_2] | |
[card_nsub0_union] | |
Thm* (i:A. Dec(P(i))) Thm* Thm* ((i:AB(i)) ~ ((i:{i:A| P(i) }B(i))+(i:{i:A| P(i) }B(i)))) | [card_split_sigma_dom_decbl] |
Thm* (i:{i:A| P(i) }B(i)) ~ {v:(i:AB(i))| P(v/x,y. x) } | [card_sigma_st_dom] |
[card_split_decbl] | |
[card_union_vs_sigma] | |
[card_union_swap] | |
[union_sigma_inverses] | |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))(i:{c..b}B(i))) | [card_split_prod_intseg_family] |
[product_functionality_wrt_one_one_corr] | |
[card_quotient] | |
[product_functionality_wrt_one_one_corr_B] | |
[card_sigma] | |
[set_functionality_wrt_one_one_corr_n_pred] | |
[set_functionality_wrt_one_one_corr_n_pred2] | |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
[card_product_swap] | |
[seq_cons_wf] | |
[union_functionality_wrt_one_one_corr] | |
[one_one_corr_fams_indep_if_one_one_corr] | |
[one_one_corr_fams_if_bij_A] | |
[one_one_corr_fams_if_one_one_corr_B] | |
[bij_iff_is_1_1_corr] | |
[bij_imp_exists_inv2] | |
[partition_type] | |
[fin_card_vs_nat_eq] | |
[counting_is_unique] | |
[absurd_nonfinite_imp_infinite] | |
[nonfin_eqv_unb_inf_iff_negnegelim] | |
[absurd_nonfin_imp_unb_inf] | |
[nsub_not_infinite] | |
[negnegelim_imp_notfin_imp_unb_inf] | |
[bij_iff_1_1_corr_version2a] | |
[ooc_preserves_infiniteness] | |
[ooc_preserves_unb_inf] | |
[infinite_imp_nonfinite] | |
[unb_inf_not_fin] | |
[bij_iff_1_1_corr_version2] | |
[bij_imp_exists_inv_version2] | |
[fun_with_inv_is_bij_version2] | |
[eta_conv_version2] | |
[comp_assoc_version2] | |
[comp_id_l_version2] | |
[comp_id_r_version2] | |
[fun_with_inv2_is_bij_rev] | |
[fun_with_inv2_is_bij] | |
[parallel_conjunct_imp] | |
[left_inv_of_surj_is_right_inv] | |
[inv_funs_2_unique] | |
[one_one_corr_2_transitivity] | |
[one_one_corr_2_inversion] | |
[one_one_corr_2_reflex] | |
[one_one_corr_2_functionality_wrt_one_one_corr] | |
[inhabited_functionality_wrt_one_one_corr] | |
[iff_weakening_wrt_one_one_corr_2] | |
[fun_with_inv2_is_surj_rev] | |
[injection_type_functionality_wrt_ooc] | |
[invfuns_are_inj] | |
[ooc_preserves_dededkind_inf] | |
[fun_with_inv2_is_inj_rev] | |
Thm* (x:A. B(x)) ~ (x':A'. B'(x')) (x':A'. B'(x')) ~ (x:A. B(x)) | [one_one_corr_fams_sym] |
[surjection_type_functionality_wrt_ooc] | |
[invfuns_are_surj] | |
[inv_funs_2_sym] | |
Thm* (x:k. y:B(x). Q(x;y)) (f:(x:kB(x)). x:k. Q(x;f(x))) | [dep_finite_choice] |
Thm* (x:k. y:A. Q(x;y)) (f:(kA). x:k. Q(x;f(x))) | [finite_choice] |
Thm* Thm* ((x:AB(x)) ~ ((x:A st P(x)B(x))(x:A st P(x)B(x)))) | [card_split_prod_intseg_family_decbl] |
Thm* (1-1-Corr x:A,y:B. R(x;y)) Thm* Thm* (f:(AB), g:(BA). Thm* (InvFuns(A;B;f;g) & (x:A, y:B. R(x;y) y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
[comp_preserves_bij] | |
[one_one_corr_iff_one_one_corr_2] | |
[inv_funs_iff_inv_funs_2] | |
Thm* (x:A. B(x)) ~ (x':A'. B'(x')) Thm* Thm* (x':A'. B'(x')) ~ (x'':A''. B''(x'')) (x:A. B(x)) ~ (x'':A''. B''(x'')) | [one_one_corr_fams_trans] |
[inv_pair_functionality_wrt_one_one_corr] | |
[surjection_type_nsub_surjection] | |
[surjection_type_surjection] | |
[compose_wf_surj] | |
[comp_preserves_surj] | |
[compose_wf_inj] | |
[comp_preserves_inj] | |
[eq_mem_is_ax] | |
[ndiff_bound] | |
[ndiff_wf_nat] | |
[Dedekind_infinite_wf] | |
[unboundedly_imp_productively_infinite] | |
[productively_infinite_wf] | |
[unboundedly_infinite_wf] | |
[factorial_via_intseg_step_rw] | |
[factorial_via_intseg_step] | |
[fin_enum_wf] | |
[inv_pair_iff_ooc] | |
[sigma_to_union_wf] | |
[union_to_sigma_wf] | |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[decidable_vs_unique_nsub2] | |
[one_one_corr_fams_refl] | |
Thm* ((x:A. B(x)) ~ (x':A'. B'(x'))) Prop | [one_one_corr_fams_wf] |
[card_sum_family_intseg_singleton_elim] | |
[card_sum_family_singleton_elim] | |
[card0_iff_uninhabited] | |
[one_one_corr_2_weakening_wrt] | |
[subset_sq_remove_card] | |
[card_prod_family_intseg_singleton_elim] | |
[card_prod_family_singleton_elim] | |
[card_nsub_inj_vs_lopped] | |
[nsub_delete_rw] | |
[nsub_delete] | |
[card_void_dom_fun_unit] | |
[card1_iff_inhabited_uniquely] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) ~ ({a:}B(a))) | [card_sum_family_singleton_vs_intseg] |
[card_subset_vs_and] | |
[ifthenelse_distr_subtype_ooc] | |
[bijtype_ooc_inj_isect_surjtype] | |
[simple_card_cross_assoc] | |
Thm* ((A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* (& (x:A. R(x;x)) Thm* (& Finite(A)) | [no_finite_model] |
Thm* (A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* Thm* (k:. f:(kA). i,j:k. i<j R(f(i);f(j))) | [no_finite_model_lemma] |
[ooc_preserves_finiteness] | |
[nsub_is_finite] | |
[is_finite_type_wf] | |
[fin_plus_nat_ooc_nat] | |
[nsub_surj_least_preimage_works] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. f(least x:. (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
[nsub_surj_least_preimage_total] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. (least x:. (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
[nsub_inj_discr_range_bijtype] | |
Thm* Thm* (k:, f:(k inj A). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Bij(k; {a:A| i:k. a = f(i) }; f)) | [nsub_inj_discr_range_bij] |
[nsub_discr_range_surjtype] | |
Thm* Thm* (k:, f:(kA). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Surj(k; {a:A| i:k. a = f(i) }; f)) | [nsub_discr_range_surj] |
[least_satisfies2] | |
[least_is_least2] | |
[least_is_least] | |
[least_satisfies] | |
[least_wf2] | |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
[least_wf] | |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
[sq_stable__inv_funs_2] | |
[fun_with_inv2_is_surj] | |
[fun_with_inv2_is_inj] | |
[one_one_corr_2_functionality_wrt_eq] | |
[one_one_corr_2_wf] | |
[inv_funs_2_identity] | |
[rel_1_1_eq_rel_1_1_b] | |
[rel_1_1_wf] | |
[rel_1_1_b_wf] | |
[pigeon_hole] | |
[inj_imp_le2] | |
[inj_typing_imp_le] | |
[inj_imp_le] | |
[finite_inj_counter_example] | |
[delete_fenum_value_is_fenum] | |
[delete_fenum_value_is_inj] | |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(i) k) | [delete_fenum_value_comp2] |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(m) k) | [delete_fenum_value_comp1] |
[delete_fenum_value_wf] | |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Bij({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k } Thm* (& Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(i) {v:| Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(m) {v:| Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
Thm* (Replace values x s.t. P(x) by y in f) XA | [replace_fn_values_wf] |
[bijtype_exteq_inj_isect_surjtype] | |
[bijection_type_inc_surj] | |
[bijtype_sub_surjtype] | |
[surjection_type_wf] | |
Thm* (i.if i=a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
[nsub_inj_lop_typing] | |
[bijection_type_inc_inj] | |
[bijtype_sub_injtype] | |
[inj_from_empty_unique] | |
[inj_point_deletion_inj] | |
[inj_point_deletion] | |
[injection_type_injection] | |
[injection_type_fun] | |
[injtype_vs_inj] | |
[injection_type_wf] | |
[bijection_type_wf] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_sum_family_singleton_vs_intseg] |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_prod_family_singleton_vs_intseg] |
[exteq_singleton_vs_intseg] | |
[decidable__nat_equal] | |
[eq_int_is_eq_nsub] | |
[ndiff_vs_diff] | |
[is_one_one_corr_rel_wf] | |
[same_range_sep] | |
[unboundedly_infinite] | |
Def == f:(AA'), g:(A'A), F:(x:AB(x)B'(f(x))), G:(x:AB'(f(x))B(x)). Def == InvFuns(A;A';f;g) & (u:A. InvFuns(B(u);B'(f(u));F(u);G(u))) | [one_one_corr_fams] |
[inv_funs_2] | |
Def == x,x':A, y,y':B. R(x;y) & R(x';y') (x = x' y = y') | [rel_1_1_b] |
[rel_1_1] | |
[is_one_one_corr_rel] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 union num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html