Thm* (AH ~ 8)  ((AH {1...8}) ~ 64) | [chessboard_example] |
Thm* A:Type, xs:A List. xs Type | [list_member_type_wf] |
Thm* x:A. (x nil)  False | [is_list_mem_null] |
Thm* x,a:A, ys:A List. (x a.ys)  x = a (x ys) | [is_list_mem_split] |
Thm* A:Type, a:A, xs:A List. (a xs) Prop | [is_list_mem_wf] |
Thm* EquivRel on A inj B, same_range_sep(A; B) | [same_range_sep_inj_eqv] |
Thm* same_range_sep(A; B) (A inj B) (A inj B) Prop | [same_range_sep_wf_inj] |
Thm* EquivRel on A B, same_range_sep(A; B) | [same_range_sep_eqv] |
Thm* same_range_sep(A; B) (A B) (A B) Prop | [same_range_sep_wf] |
Thm* p:( a {k} ). {i: a| p(i) } ~ k | [card_st_sized_bool] |
Thm* p:( a  ). {x: a| p(x) } ~ ( size( a)(p)) | [card_st_vs_boolsize] |
Thm* f:( a  2).
Thm* ( i: a. P(i)  f(i) = 1 2)  ({x: a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
Thm* ( a {k} ) ~ ( a {k} 2) | [card_boolset_vs_mset] |
Thm* a,k: . a {k} Type | [sized_bool_wf] |
Thm* a: . size( a) ( a  )   | [boolsize_wf] |
Thm* a,k,x: . a {k} {x...} Type | [sized_mset_wf5] |
Thm* a,k: . a {k}  Type | [sized_mset_wf4] |
Thm* a,k,x: , y: . a {k} {x...y} Type | [sized_mset_wf3] |
Thm* a,k,x: , y: . a {k} {x..y } Type | [sized_mset_wf2] |
Thm* a,k: . a {k} Type | [sized_mset_wf] |
Thm* k: . Msize ( k  )   | [msize_wf] |
Thm* ( a bij a) ~ ( a  a) | [nsub_bij_ooc_invpair] |
Thm* ( k inj k) ~ ( k onto k) | [nsub_inj_ooc_nsub_surj] |
Thm* ( k inj k) ~ ( k bij k) | [nsub_inj_ooc_nsub_bij] |
Thm* ( k inj k) =ext ( k bij k) | [nsub_inj_exteq_nsub_bij] |
Thm* ( k onto k) ~ ( k bij k) | [nsub_surj_ooc_nsub_bij] |
Thm* ( k onto k) =ext ( k bij k) | [nsub_surj_exteq_nsub_bij] |
Thm* ( k inj k) =ext ( k onto k) | [nsub_inj_exteq_nsub_surj] |
Thm* ( ( a onto b))  b a | [surj_typing_imp_le] |
Thm* ( ( a onto b))  ( ( b inj a)) | [nsub_surj_imp_a_rev_inj2] |
Thm* f:( a bij a). InvFuns( a; a;f; y.least x: . f(x)= y) | [nsub_bij_least_preimage_inverse] |
Thm* f:( a onto b). ( y.least x: . f(x)= y) b inj a | [nsub_surj_imp_a_rev_inj] |
Thm* e:(B B  ).
Thm* IsEqFun(B;e)
Thm* 
Thm* ( a: , f:( a onto B). ( y.least x: . (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
Thm* Dedekind-Infinite(A)  Finite(A) | [dedekind_imp_nonfin] |
Thm* Dedekind-Infinite(A)  Unbounded(A) | [dededing_imp_unb_inf] |
Thm* Dedekind-Infinite(A)  Infinite(A) | [dedekind_inf_imp_inf] |
Thm* InvFuns(A;A;f;g)  ( i: . InvFuns(A;A;f{ i};g{ i})) | [compose_iter_inverses] |
Thm* Bij(A; A; f)  ( i: . Bij(A; A; f{ i})) | [compose_iter_bijection] |
Thm* Surj(A; A; f)  ( i: . Surj(A; A; f{ i})) | [compose_iter_surjection] |
Thm* f:(A inj A), i: . f{ i} A inj A | [compose_iter_injection2] |
Thm* k: , f:( k inj k). i: . f{ i} = Id k  k | [iter_perm_cycles_uniform2] |
Thm* k: , f:( k inj k). i: . u: k. f{ i}(u) = u | [iter_perm_cycles_uniform] |
Thm* k: , f:( k inj k), u: k. i: . f{ i}(u) = u | [compose_iter_inj_cycles] |
Thm* Inj(A; A; f)  ( i: . Inj(A; A; f{ i})) | [compose_iter_injection] |
Thm* f:(A A), i: . f{ i} = f{ i-1} o f | [compose_iter_pos_comp2] |
Thm* f:(A A), i: , x:A. f{ i}(x) = f{ i-1}(f(x)) | [compose_iter_pos2] |
Thm* x:A, f:(A A), i,j: . f{ i}{ j}(x) = f{ i j}(x) | [compose_iter_prod2] |
Thm* x:A, f:(A A), i,j,k: . k = i j  f{ i}{ j}(x) = f{ k}(x) A | [compose_iter_prod] |
Thm* f:(A A), k: , i:{0...k}. f{ k} = f{ i} o f{ k-i} | [compose_iter_sum_comp_rw] |
Thm* x:A, f:(A A), k: , i:{0...k}. f{ k}(x) = f{ i}(f{ k-i}(x)) | [compose_iter_sum_rw] |
Thm* f:(A A), i,j,k: . k = i+j  f{ i} o f{ j} = f{ k} | [compose_iter_sum_comp] |
Thm* x:A, f:(A A), i,j,k: . k = i+j  f{ i}(f{ j}(x)) = f{ k}(x) | [compose_iter_sum] |
Thm* i: . Id{ i} = Id A A | [compose_iter_id] |
Thm* f:(A A), i: . f{ i} = f o f{ i-1} | [compose_iter_pos_comp] |
Thm* f:(A A), u:A. f(u) = u  ( i: . f{ i}(u) = u) | [compose_iter_point_id] |
Thm* f:(A A), i: , x:A. f{ i}(x) = f(f{ i-1}(x)) | [compose_iter_pos] |
Thm* f:(A A). f{ 1} = f | [compose_iter_once] |
Thm* f:(A A). f{ 0} = Id | [compose_iter_zero_id] |
Thm* f:(A A), x:A. f{ 0}(x) = x | [compose_iter_zero] |
Thm* k: . ( k  ) ~  | [card_nat_vs_nat_tuple] |
Thm* f:(A A), i: . f{ i} A A | [compose_iter_wf] |
Thm* xy:(  ). <0,0> = next_nat_pair(xy)    | [next_nat_pair_not_zeroes] |
Thm* ( (A B)) ~ (A ~ B) | [inv_pair_inv2] |
Thm* (A B) ~ (A ~ B) | [inv_pair_inv] |
Thm* a: , b:( a  ). (i: a b(i)) ~ ( i: a. b(i)) | [card_sigma_vs_nsub_sigma] |
Thm* a,b: . ( a+ b) ~ (a+b) | [nsub_add_rw] |
Thm* (A B C) ~ (B A C) | [card_curry_simple2] |
Thm* a,b,c: . c (a b) = (c a) b | [exp_exp_reduce2] |
Thm* a,b,c: . c (a b) = (c b) a | [exp_exp_reduce1] |
Thm* a,b: . ( a  b) ~ (b a) | [card_fun_vs_nsub_exp] |
Thm* a: , b:( a  ). (i: a  b(i)) ~ ( i: a. b(i)) | [card_pi_vs_nsub_pi] |
Thm* ( k inj k) ~ (k!) | [nsub_inj_factorial] |
Thm* ( a inj b) ~ (b!a) | [nsub_inj_factorial_tail] |
Thm* ( b inj b) ~ (b!) | [nsub_inj_factorial2] |
Thm* a,b: . (A ~ a)  (B ~ b)  ((A B) ~ (a b)) | [finite_indep_sum_card] |
Thm* a,b,c: . a (b c) = (a b) c | [mul_assoc_from_cross_assoc] |
Thm* a,b: . ( a b) ~ (a b) | [nsub_mul_rw] |
Thm* a,b,c: . a b = c  (( a b) ~ c) | [nsub_mul] |
Thm* c,a,b: . a+b = c  (( a+ b) ~ c) | [nsub_add] |
Thm* a,b: , c:{a...b}. ({a..c }+{c..b }) ~ {a..b } | [intseg_split] |
Thm* a,b: . {a...b} ~ (1+b-a) | [nsub_intiseg_rw] |
Thm* a: , b: . {a...b} ~ {a..(b+1) } | [intiseg_intseg_plus] |
Thm* a,b',b: . b = b'+1  ({a...b'} ~ {a..b }) | [intiseg_intseg] |
Thm* a,b: . {a..b } ~ (b-a) | [nsub_intseg_rw] |
Thm* c,a: , b: . c = b-a  ({a..b } ~ c) | [nsub_intseg] |
Thm* a: , b,c: . {a..b } ~ {(a+c)..(b+c) } | [intseg_shift_by] |
Thm* a,b,a',b': . b-a = b'-a'  ({a..b } ~ {a'..b' }) | [intseg_shift] |
Thm* a,b: . b a  (Void ~ {a..b }) | [intseg_void] |
Thm* (xy:(x:A B(x)) C(xy)) ~ (x:A y:B(x) C(<x,y>)) | [card_sigma_distr] |
Thm* (z:(x:A B(x)) C(z)) ~ (x:A y:B(x) C(<x,y>)) | [card_curry] |
Thm* (A B C) ~ (A B C) | [card_curry_simple] |
Thm* (A ~ A')  (B ~ B')  ((A B) ~ (A' B')) | [function_functionality_wrt_one_one_corr] |
Thm* B,B':(A Type). ( x:A. B(x) ~ B'(x))  ((x:A B(x)) ~ (x:A B'(x))) | [function_functionality_wrt_one_one_corr_B] |
Thm* (x:A. B(x)) ~ (x:A'. B'(x))  ((x:A B(x)) ~ (x:A' B'(x))) | [card_pi] |
Thm* a,b: , B:({a..b } Type).
Thm* a<b  ((i:{a..b } B(i)) ~ ((i:{a..(b-1) } B(i))+B(b-1))) | [card_split_end_sum_intseg_family] |
Thm* a,b: , c:{a...b}, B:({a..b } Type).
Thm* (i:{a..b } B(i)) ~ ((i:{a..c } B(i))+(i:{c..b } B(i))) | [card_split_sum_intseg_family] |
Thm* ( x:A. Dec( P(x)))  (A ~ ({x:A| P(x) }+{x:A| P(x) })) | [card_split_decbl_squash] |
Thm* (A+ 0) ~ A | [card_nsub0_union_2] |
Thm* ( 0+A) ~ A | [card_nsub0_union] |
Thm* B:(A Type), P:(A Prop).
Thm* ( i:A. Dec(P(i)))
Thm* 
Thm* ((i:A B(i)) ~ ((i:{i:A| P(i) } B(i))+(i:{i:A| P(i) } B(i)))) | [card_split_sigma_dom_decbl] |
Thm* B:(A Type), P:(A Prop).
Thm* (i:{i:A| P(i) } B(i)) ~ {v:(i:A B(i))| P(v/x,y. x) } | [card_sigma_st_dom] |
Thm* ( x:A. Dec(P(x)))  (A ~ ({x:A| P(x) }+{x:A| P(x) })) | [card_split_decbl] |
Thm* (A+B) ~ (i: 2 if i= 0 A else B fi) | [card_union_vs_sigma] |
Thm* (A+B) ~ (B+A) | [card_union_swap] |
Thm* InvFuns(A+B;i: 2 if i= 0 A else B fi;union_to_sigma;sigma_to_union) | [union_sigma_inverses] |
Thm* a,b: , c:{a...b}, B:({a..b } Type).
Thm* (i:{a..b } B(i)) ~ ((i:{a..c } B(i)) (i:{c..b } B(i))) | [card_split_prod_intseg_family] |
Thm* (A ~ A')  (B ~ B')  ((A B) ~ (A' B')) | [product_functionality_wrt_one_one_corr] |
Thm* (q:A/E {x:A| q = x A/E }) ~ A | [card_quotient] |
Thm* B,B':(A Type). ( x:A. B(x) ~ B'(x))  ((x:A B(x)) ~ (x:A B'(x))) | [product_functionality_wrt_one_one_corr_B] |
Thm* (x:A. B(x)) ~ (x:A'. B'(x))  ((x:A B(x)) ~ (x:A' B'(x))) | [card_sigma] |
Thm* ( x:A. B(x)  B'(x))  ({x:A| B(x) } ~ {x:A| B'(x) }) | [set_functionality_wrt_one_one_corr_n_pred] |
Thm* ( x:A. B(x)  B'(x))  ({x:A| B(x) } ~ {x:A| B'(x) }) | [set_functionality_wrt_one_one_corr_n_pred2] |
Thm* Bij(A; A'; f)
Thm* 
Thm* ( x:A. B(x)  B'(f(x)))  ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Bij(A; A'; f)
Thm* 
Thm* ( x:A. B(x)  B'(f(x)))  ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
Thm* (A B) ~ (B A) | [card_product_swap] |
Thm* A:Type, n: , x:A, xs:( (n-1) A). [x/ xs] n A | [seq_cons_wf] |
Thm* (A ~ A')  (B ~ B')  ((A+B) ~ (A'+B')) | [union_functionality_wrt_one_one_corr] |
Thm* (A ~ A')  (B ~ B')  (:A. B) ~ (:A'. B') | [one_one_corr_fams_indep_if_one_one_corr] |
Thm* g:(A' A). Bij(A'; A; g)  (x:A. B(x)) ~ (x':A'. B(g(x'))) | [one_one_corr_fams_if_bij_A] |
Thm* ( x:A. B(x) ~ B'(x))  (x:A. B(x)) ~ (x:A. B'(x)) | [one_one_corr_fams_if_one_one_corr_B] |
Thm* Bij(A; B; f)  f is 1-1 corr | [bij_iff_is_1_1_corr] |
Thm* f:(A B). Bij(A; B; f)  ( g:(B A). InvFuns(A;B;f;g)) | [bij_imp_exists_inv2] |
Thm* P:(A B Prop). ( x:A. !y:B. P(x;y))  (A ~ (y:B {x:A| P(x;y) })) | [partition_type] |
Thm* a,b: . ( a ~ b)  a = b | [fin_card_vs_nat_eq] |
Thm* (A ~ m)  (A ~ k)  m = k | [counting_is_unique] |
Thm* ( A:Type. Finite(A)  Infinite(A))  ( D:Type.  ( D)  ( D)) | [absurd_nonfinite_imp_infinite] |
Thm* ( A:Type. Finite(A)  Unbounded(A))  ( P:Prop.  P  P) | [nonfin_eqv_unb_inf_iff_negnegelim] |
Thm* ( A:Type. Finite(A)  Unbounded(A))  ( D:Type.  ( D)  ( D)) | [absurd_nonfin_imp_unb_inf] |
Thm* k: . Infinite( k) | [nsub_not_infinite] |
Thm* ( P:Prop.  P  P)  ( A:Type. Finite(A)  Unbounded(A)) | [negnegelim_imp_notfin_imp_unb_inf] |
Thm* ( f:(A B). Bij(A; B; f))  (B ~ A) | [bij_iff_1_1_corr_version2a] |
Thm* (A ~ B)  Infinite(A)  Infinite(B) | [ooc_preserves_infiniteness] |
Thm* (A ~ B)  Unbounded(A)  Unbounded(B) | [ooc_preserves_unb_inf] |
Thm* Infinite(A)  Finite(A) | [infinite_imp_nonfinite] |
Thm* Unbounded(A)  Finite(A) | [unb_inf_not_fin] |
Thm* ( f:(A B). Bij(A; B; f))  (A ~ B) | [bij_iff_1_1_corr_version2] |
Thm* f:(A B). Bij(A; B; f)  ( g:(B A). InvFuns(A;B;f;g)) | [bij_imp_exists_inv_version2] |
Thm* f:(A B), g:(B A). InvFuns(A;B;f;g)  Bij(A; B; f) | [fun_with_inv_is_bij_version2] |
Thm* f:(A B). ( x.f(x)) = f | [eta_conv_version2] |
Thm* f:(A B), g:(B C), h:(C D). h o (g o f) = (h o g) o f A D | [comp_assoc_version2] |
Thm* f:(A B). Id o f = f A B | [comp_id_l_version2] |
Thm* f:(A B). f o Id = f A B | [comp_id_r_version2] |
Thm* InvFuns(A;B;f;g)  Bij(B; A; g) | [fun_with_inv2_is_bij_rev] |
Thm* InvFuns(A;B;f;g)  Bij(A; B; f) | [fun_with_inv2_is_bij] |
Thm* (A  C)  (B  D)  A & B  C & D | [parallel_conjunct_imp] |
Thm* g:(B A). Surj(A; B; f)  ( x:A. g(f(x)) = x)  ( y:B. f(g(y)) = y) | [left_inv_of_surj_is_right_inv] |
Thm* InvFuns(A;B;f;g)  InvFuns(A;B;f;h)  g = h | [inv_funs_2_unique] |
Thm* (A ~ B)  (B ~ C)  (A ~ C) | [one_one_corr_2_transitivity] |
Thm* (A ~ B)  (B ~ A) | [one_one_corr_2_inversion] |
Thm* A ~ A | [one_one_corr_2_reflex] |
Thm* (A ~ A')  (B ~ B')  ((A ~ B)  (A' ~ B')) | [one_one_corr_2_functionality_wrt_one_one_corr] |
Thm* (A ~ B)  (( A)  ( B)) | [inhabited_functionality_wrt_one_one_corr] |
Thm* (A ~ B)  (A  B) | [iff_weakening_wrt_one_one_corr_2] |
Thm* InvFuns(A;B;f;g)  Surj(B; A; g) | [fun_with_inv2_is_surj_rev] |
Thm* (A ~ A')  (B ~ B')  ((A inj B) ~ (A' inj B')) | [injection_type_functionality_wrt_ooc] |
Thm* InvFuns(A;B;f;g)  Inj(A; B; f) & Inj(B; A; g) | [invfuns_are_inj] |
Thm* (A ~ B)  Dedekind-Infinite(A)  Dedekind-Infinite(B) | [ooc_preserves_dededkind_inf] |
Thm* InvFuns(A;B;f;g)  Inj(B; A; g) | [fun_with_inv2_is_inj_rev] |
Thm* B:(A Type), B':(A' Type).
Thm* (x:A. B(x)) ~ (x':A'. B'(x'))  (x':A'. B'(x')) ~ (x:A. B(x)) | [one_one_corr_fams_sym] |
Thm* (A ~ A')  (B ~ B')  ((A onto B) ~ (A' onto B')) | [surjection_type_functionality_wrt_ooc] |
Thm* InvFuns(A;B;f;g)  Surj(A; B; f) & Surj(B; A; g) | [invfuns_are_surj] |
Thm* InvFuns(A;B;f;g)  InvFuns(B;A;g;f) | [inv_funs_2_sym] |
Thm* k: , B:( k Type), Q:(x: k B(x) Prop).
Thm* ( x: k. y:B(x). Q(x;y))  ( f:(x: k B(x)). x: k. Q(x;f(x))) | [dep_finite_choice] |
Thm* k: , Q:( k A Prop).
Thm* ( x: k. y:A. Q(x;y))  ( f:( k A). x: k. Q(x;f(x))) | [finite_choice] |
Thm* ( x:A. Dec(P(x)))
Thm* 
Thm* ((x:A B(x)) ~ ((x:A st P(x) B(x)) (x:A st P(x) B(x)))) | [card_split_prod_intseg_family_decbl] |
Thm* R:(A B Prop).
Thm* (1-1-Corr x:A,y:B. R(x;y))
Thm* 
Thm* ( f:(A B), g:(B A).
Thm* (InvFuns(A;B;f;g) & ( x:A, y:B. R(x;y)  y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
Thm* Bij(A; B; g)  Bij(B; C; f)  Bij(A; C; f o g) | [comp_preserves_bij] |
Thm* A:Type, B:Type. (A ~~ B)  (A ~ B) | [one_one_corr_iff_one_one_corr_2] |
Thm* InvFuns(A; B; f; g)  InvFuns(A;B;f;g) | [inv_funs_iff_inv_funs_2] |
Thm* A:Type, A',A'':Type, B:(A Type), B':(A' Type), B'':(A'' Type).
Thm* (x:A. B(x)) ~ (x':A'. B'(x'))
Thm* 
Thm* (x':A'. B'(x')) ~ (x'':A''. B''(x''))  (x:A. B(x)) ~ (x'':A''. B''(x'')) | [one_one_corr_fams_trans] |
Thm* (A ~ A')  (B ~ B')  ((A B) ~ (A' B')) | [inv_pair_functionality_wrt_one_one_corr] |
Thm* f:( a onto b). Surj( a; b; f) | [surjection_type_nsub_surjection] |
Thm* f:(A onto B), a: . a onto A  (B Discrete)  Surj(A; B; f) | [surjection_type_surjection] |
Thm* f:(B onto C), g:(A onto B). f o g A onto C | [compose_wf_surj] |
Thm* Surj(A; B; g)  Surj(B; C; f)  Surj(A; C; f o g) | [comp_preserves_surj] |
Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C | [compose_wf_inj] |
Thm* Inj(A; B; g)  Inj(B; C; f)  Inj(A; C; f o g) | [comp_preserves_inj] |
Thm* a,a':A, x:(a = a'). x = * | [eq_mem_is_ax] |
Thm* b,a: . b (b -- a)+a | [ndiff_bound] |
Thm* a,b: . (a -- b)  | [ndiff_wf_nat] |
Thm* A:Type. Dedekind-Infinite(A) Prop | [Dedekind_infinite_wf] |
Thm* Infinite(A)  Unbounded(A) | [unboundedly_imp_productively_infinite] |
Thm* A:Type. Infinite(A) Prop | [productively_infinite_wf] |
Thm* A:Type. Unbounded(A) Prop | [unboundedly_infinite_wf] |
Thm* k: . k! = k (k-1)!  | [factorial_via_intseg_step_rw] |
Thm* k,n: . k = n+1  k! = k n!  | [factorial_via_intseg_step] |
Thm* A:Type. fin_enum(A) Type | [fin_enum_wf] |
Thm* ( (A B))  (A ~ B) | [inv_pair_iff_ooc] |
Thm* A,B:Type. sigma_to_union (i: 2 if i= 0 A else B fi) (A+B) | [sigma_to_union_wf] |
Thm* A,B:Type. union_to_sigma (A+B) (i: 2 if i= 0 A else B fi) | [union_to_sigma_wf] |
Thm* P:{P:(  Prop)| i: . P(i) }.
Thm* ( i: . Dec(P(i)))  ( {i: | P(i) & ( j: . j<i  P(j)) }) | [least_exists2] |
Thm* k: , P:{P:( k Prop)| i: k. P(i) }.
Thm* ( i: k. Dec(P(i)))  ( {i: k| P(i) & ( j: i. P(j)) }) | [least_exists] |
Thm* Dec(P)  ( !i: 2. if i= 0 P else P fi) | [decidable_vs_unique_nsub2] |
Thm* (x:A. B(x)) ~ (x:A. B(x)) | [one_one_corr_fams_refl] |
Thm* A:Type, A':Type, B:(A Type), B':(A' Type).
Thm* ((x:A. B(x)) ~ (x':A'. B'(x'))) Prop | [one_one_corr_fams_wf] |
Thm* a,a': . a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) ~ B(a)) | [card_sum_family_intseg_singleton_elim] |
Thm* B:({a:A} Type). (i:{a:A} B(i)) ~ B(a) | [card_sum_family_singleton_elim] |
Thm* (A ~ 0)  ( A) | [card0_iff_uninhabited] |
Thm* A = B  (A ~ B) | [one_one_corr_2_weakening_wrt] |
Thm* {x:A| B(x) } ~ {x:A| B(x) } | [subset_sq_remove_card] |
Thm* a,a': . a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) ~ B(a)) | [card_prod_family_intseg_singleton_elim] |
Thm* (i:{a:A} B(i)) ~ B(a) | [card_prod_family_singleton_elim] |
Thm* a,b: . ( a inj b) ~ ( b ( (a-1) inj (b-1))) | [card_nsub_inj_vs_lopped] |
Thm* k: , j: k. {i: k| i = j } ~ (k-1) | [nsub_delete_rw] |
Thm* k: , j: k, m: . m = k-1  ({i: k| i = j } ~ m) | [nsub_delete] |
Thm* ( 0 A) ~ 1 | [card_void_dom_fun_unit] |
Thm* (A ~ 1)  ( ! A) | [card1_iff_inhabited_uniquely] |
Thm* a,a': .
Thm* a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) ~ ({a: } B(a))) | [card_sum_family_singleton_vs_intseg] |
Thm* {x:{x:A| P(x) }| Q(x) } ~ {x:A| P(x) & Q(x) } | [card_subset_vs_and] |
Thm* {x:A| if b P(x) else Q(x) fi } ~ if b {x:A| P(x) } else {x:A| Q(x) } fi | [ifthenelse_distr_subtype_ooc] |
Thm* (A bij B) ~ ((A inj B) (A onto B)) | [bijtype_ooc_inj_isect_surjtype] |
Thm* (A B C) ~ ((A B) C) | [simple_card_cross_assoc] |
Thm* ( A:Type, R:(A A Prop).
Thm* (( A) & (Trans x,y:A. R(x;y)) & ( x:A. y:A. R(x;y))
Thm* (& ( x:A. R(x;x))
Thm* (& Finite(A)) | [no_finite_model] |
Thm* R:(A A Prop).
Thm* ( A) & (Trans x,y:A. R(x;y)) & ( x:A. y:A. R(x;y))
Thm* 
Thm* ( k: . f:( k A). i,j: k. i<j  R(f(i);f(j))) | [no_finite_model_lemma] |
Thm* (A ~ B)  Finite(A)  Finite(B) | [ooc_preserves_finiteness] |
Thm* k: . Finite( k) | [nsub_is_finite] |
Thm* A:Type. Finite(A) Prop | [is_finite_type_wf] |
Thm* k: . ( k+ ) ~  | [fin_plus_nat_ooc_nat] |
Thm* f:( a onto b), y: b. f(least x: . f(x)= y) = y | [nsub_surj_least_preimage_works] |
Thm* e:(B B  ).
Thm* IsEqFun(B;e)  ( a: , f:( a onto B), y:B. f(least x: . (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
Thm* f:( a onto b), y: b. (least x: . f(x)= y) a | [nsub_surj_least_preimage_total] |
Thm* e:(B B  ).
Thm* IsEqFun(B;e)  ( a: , f:( a onto B), y:B. (least x: . (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
Thm* (A Discrete)  ( k: , f:( k inj A). f k bij {a:A| i: k. a = f(i) }) | [nsub_inj_discr_range_bijtype] |
Thm* (A Discrete)
Thm* 
Thm* ( k: , f:( k inj A).
Thm* ({a:A| i: k. a = f(i) } Type
Thm* (& f k {a:A| i: k. a = f(i) }
Thm* (& Bij( k; {a:A| i: k. a = f(i) }; f)) | [nsub_inj_discr_range_bij] |
Thm* (A Discrete)  ( k: , f:( k A). f k onto {a:A| i: k. a = f(i) }) | [nsub_discr_range_surjtype] |
Thm* (A Discrete)
Thm* 
Thm* ( k: , f:( k A).
Thm* ({a:A| i: k. a = f(i) } Type
Thm* (& f k {a:A| i: k. a = f(i) }
Thm* (& Surj( k; {a:A| i: k. a = f(i) }; f)) | [nsub_discr_range_surj] |
Thm* p:{p:(   )| i: . p(i) }. p(least i: . p(i)) | [least_satisfies2] |
Thm* p:{p:(   )| i: . p(i) }, j: (least i: . p(i)). p(j) | [least_is_least2] |
Thm* k: , p:{p:( k  )| i: k. p(i) }, j: (least i: . p(i)). p(j) | [least_is_least] |
Thm* k: , p:{p:( k  )| i: k. p(i) }. p(least i: . p(i)) | [least_satisfies] |
Thm* p:{p:(   )| i: . p(i) }. (least i: . p(i))  | [least_wf2] |
Thm* p:{p:(   )| i: . p(i) }.
Thm* (least i: . p(i)) {i: | p(i) & ( j: . j<i  p(j)) } | [least_characterized2] |
Thm* k: , p:{p:( k  )| i: k. p(i) }. (least i: . p(i)) k | [least_wf] |
Thm* k: , p:{p:( k  )| i: k. p(i) }.
Thm* (least i: . p(i)) {i: k| p(i) & ( j: i. p(j)) } | [least_characterized] |
Thm* f:(A B), g:(B A). SqStable(InvFuns(A;B;f;g)) | [sq_stable__inv_funs_2] |
Thm* InvFuns(A;B;f;g)  Surj(A; B; f) | [fun_with_inv2_is_surj] |
Thm* InvFuns(A;B;f;g)  Inj(A; B; f) | [fun_with_inv2_is_inj] |
Thm* A = A'  B = B'  (A ~ B) = (A' ~ B') | [one_one_corr_2_functionality_wrt_eq] |
Thm* A,B:Type. (A ~ B) Prop | [one_one_corr_2_wf] |
Thm* InvFuns(A;A;Id;Id) | [inv_funs_2_identity] |
Thm* R:(A B Prop). (R is 1-1) = (1-1 x A,y B. R(x;y)) | [rel_1_1_eq_rel_1_1_b] |
Thm* A,B:Type, R:(A B Prop). (R is 1-1) Type | [rel_1_1_wf] |
Thm* A,B:Type, R:(A B Type). (1-1 x A,y B. R(x;y)) Type | [rel_1_1_b_wf] |
Thm* m,k: , f:( m  k). k<m  ( x,y: m. x y & f(x) = f(y)) | [pigeon_hole] |
Thm* m,k: , f:( m  k). Inj( m; k; f)  m k | [inj_imp_le2] |
Thm* ( ( m inj k))  m k | [inj_typing_imp_le] |
Thm* ( f:( m  k). Inj( m; k; f))  m k | [inj_imp_le] |
Thm* m: , f:( m  ). Inj( m; ; f)  ( x: m, y: x. f(x) = f(y)) | [finite_inj_counter_example] |
Thm* Bij( (m+1); (k+1); f)  Bij( m; k; Replace value k by f(m) in f) | [delete_fenum_value_is_fenum] |
Thm* Inj( (m+1); (k+1); f)  Inj( m; k; Replace value k by f(m) in f) | [delete_fenum_value_is_inj] |
Thm* Inj( (m+1); (k+1); f)
Thm* 
Thm* ( i: m. f(i) = k  (Replace value k by f(m) in f)(i) = f(i)  k) | [delete_fenum_value_comp2] |
Thm* Inj( (m+1); (k+1); f)
Thm* 
Thm* ( i: m. f(i) = k  (Replace value k by f(m) in f)(i) = f(m)  k) | [delete_fenum_value_comp1] |
Thm* Inj( (m+1); (k+1); f)  (Replace value k by f(m) in f) m  k | [delete_fenum_value_wf] |
Thm* Bij({u: | P(u) }; {v: | Q(v) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }.
Thm* (Bij({u: | P(u) & u = m }; {v: | Q(v) & v = k };
Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Inj({u: | P(u) }; {v: | Q(v) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }.
Thm* (Inj({u: | P(u) & u = m }; {v: | Q(v) & v = k };
Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Inj({u: | P(u) }; {v: | Q(v) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }.
Thm* ((Replace value k by f(m) in f)
Thm* ( {u: | P(u) & u = m } {v: | Q(v) & v = k }
Thm* (& Inj({u: | P(u) & u = m }; {v: | Q(v) & v = k };
Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Inj({u: | P(u) }; {u: | Q(u) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }, i:{u: | P(u) & u = m }.
Thm* ( f(i) = k
Thm* (
Thm* ((Replace value k by f(m) in f)(i) = f(i) {v: | Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Inj({u: | P(u) }; {u: | Q(u) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }, i:{u: | P(u) & u = m }.
Thm* (f(i) = k
Thm* (
Thm* ((Replace value k by f(m) in f)(i) = f(m) {v: | Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Inj({k: | P(k) }; {k: | Q(k) }; f)
Thm* 
Thm* ( m:{u: | P(u) }, k:{v: | Q(v) }.
Thm* ((Replace value k by f(m) in f)
Thm* ( {u: | P(u) & u = m } {v: | Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
Thm* A,X:Type, P:(A  ), y:A, f:(X A).
Thm* (Replace values x s.t. P(x) by y in f) X A | [replace_fn_values_wf] |
Thm* (A bij B) =ext ((A inj B) (A onto B)) | [bijtype_exteq_inj_isect_surjtype] |
Thm* (A bij B) (A onto B) | [bijection_type_inc_surj] |
Thm* (A bij B) (A onto B) | [bijtype_sub_surjtype] |
Thm* A,B:Type. A onto B Type | [surjection_type_wf] |
Thm* a: , b: , j: b, f:( (a-1) inj {x: b| x = j }).
Thm* ( i.if i= a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
Thm* a: , b: , f:( a inj b). f (a-1) inj {x: b| x = f(a-1) } | [nsub_inj_lop_typing] |
Thm* (A bij B) (A inj B) | [bijection_type_inc_inj] |
Thm* (A bij B) (A inj B) | [bijtype_sub_injtype] |
Thm* ( A)  ( ! (A inj B)) | [inj_from_empty_unique] |
Thm* f:(A inj B), a:A. f {x:A| x = a } inj {y:B| y = f(a) } | [inj_point_deletion_inj] |
Thm* f:(A inj B), a:A. f {x:A| x = a } {y:B| y = f(a) } | [inj_point_deletion] |
Thm* f:(A inj B). Inj(A; B; f) | [injection_type_injection] |
Thm* f:(A inj B). f A B | [injection_type_fun] |
Thm* ( (A inj B))  ( f:(A B). Inj(A; B; f)) | [injtype_vs_inj] |
Thm* A,B:Type. A inj B Type | [injection_type_wf] |
Thm* A,B:Type. A bij B Type | [bijection_type_wf] |
Thm* a,a': .
Thm* a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) =ext ({a: } B(a))) | [exteq_sum_family_singleton_vs_intseg] |
Thm* a,a': .
Thm* a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) =ext ({a: } B(a))) | [exteq_prod_family_singleton_vs_intseg] |
Thm* a,a': . a'-a = 1  ({a..a' } =ext {a: }) | [exteq_singleton_vs_intseg] |
Thm* i,j: . Dec(i = j) | [decidable__nat_equal] |
Thm* IsEqFun( b; i,j. i= j) | [eq_int_is_eq_nsub] |
Thm* a,b: . a b  (b -- a) = b-a | [ndiff_vs_diff] |
Thm* A,B:Type, R:(A B Prop). (1-1-Corr x:A,y:B. R(x;y)) Prop | [is_one_one_corr_rel_wf] |
Def same_range_sep(A; B) ==  f,g. j:B. ( i:A. f(i) = j)  ( i:A. g(i) = j) | [same_range_sep] |
Def Unbounded(A) == k: .  ( k inj A) | [unboundedly_infinite] |
Def (x:A. B(x)) ~ (x':A'. B'(x'))
Def == f:(A A'), g:(A' A), F:(x:A B(x) B'(f(x))), G:(x:A B'(f(x)) B(x)).
Def == InvFuns(A;A';f;g) & ( u:A. InvFuns(B(u);B'(f(u));F(u);G(u))) | [one_one_corr_fams] |
Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) | [inv_funs_2] |
Def 1-1 x A,y B. R(x;y)
Def == x,x':A, y,y':B. R(x;y) & R(x';y')  (x = x'  y = y') | [rel_1_1_b] |
Def R is 1-1 == x,x':A, y,y':B. R(x,y) & R(x',y')  (x = x'  y = y') | [rel_1_1] |
Def 1-1-Corr x:A,y:B. R(x;y) == ( x:A. !y:B. R(x;y)) & ( y:B. !x:A. R(x;y)) | [is_one_one_corr_rel] |