Nuprl Lemma : p-adics-subtype

[p:ℕ+]. (p-adics(p) ⊆(ℕ+ ⟶ ℤ))


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) nat_plus: + subtype_rel: A ⊆B uall: [x:A]. B[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-adics: p-adics(p) subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} so_apply: x[s]
Lemmas referenced :  subtype_rel_set nat_plus_wf int_seg_wf exp_wf2 nat_plus_subtype_nat all_wf eqmod_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf subtype_rel_dep_function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis natural_numberEquality hypothesisEquality applyEquality setElimination rename intEquality lambdaEquality because_Cache functionExtensionality dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination minusEquality axiomEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  (p-adics(p)  \msubseteq{}r  (\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}))



Date html generated: 2018_05_21-PM-03_18_33
Last ObjectModification: 2018_05_19-AM-08_09_24

Theory : rings_1


Home Index