Nuprl Lemma : int_loset_wf
int_loset() ∈ LOSet
Proof
Definitions occuring in Statement : 
int_loset: int_loset()
, 
loset: LOSet
, 
member: t ∈ T
Definitions unfolded in proof : 
int_loset: int_loset()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
eqfun_p: IsEqFun(T;eq)
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
connex: Connex(T;x,y.R[x; y])
Lemmas referenced : 
mk_oset_wf, 
eq_int_wf, 
le_int_wf, 
equal-wf-base, 
int_subtype_base, 
iff_weakening_uiff, 
assert_wf, 
assert_of_eq_int, 
assert_witness, 
uall_wf, 
uiff_wf, 
ulinorder_functionality_wrt_iff, 
le_wf, 
assert_of_le_int, 
less_than'_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformand_wf, 
int_formula_prop_and_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__or, 
intformor_wf, 
int_formula_prop_or_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
isect_memberFormation, 
independent_pairFormation, 
applyEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
uallFunctionality, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
voidElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll, 
lambdaFormation
Latex:
int\_loset()  \mmember{}  LOSet
Date html generated:
2017_10_01-AM-08_13_23
Last ObjectModification:
2017_02_28-PM-01_57_59
Theory : sets_1
Home
Index