Nuprl Lemma : int_loset_wf

int_loset() ∈ LOSet


Proof




Definitions occuring in Statement :  int_loset: int_loset() loset: LOSet member: t ∈ T
Definitions unfolded in proof :  int_loset: int_loset() member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a eqfun_p: IsEqFun(T;eq) infix_ap: y uiff: uiff(P;Q) and: P ∧ Q prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] le: A ≤ B not: ¬A false: False ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top utrans: UniformlyTrans(T;x,y.E[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y])
Lemmas referenced :  mk_oset_wf eq_int_wf le_int_wf equal-wf-base int_subtype_base iff_weakening_uiff assert_wf assert_of_eq_int assert_witness uall_wf uiff_wf ulinorder_functionality_wrt_iff le_wf assert_of_le_int less_than'_wf decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf intformand_wf int_formula_prop_and_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__or intformor_wf int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality hypothesis independent_isectElimination sqequalRule isect_memberFormation independent_pairFormation applyEquality because_Cache productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry addLevel uallFunctionality independent_functionElimination cumulativity instantiate dependent_functionElimination voidElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality voidEquality computeAll lambdaFormation

Latex:
int\_loset()  \mmember{}  LOSet



Date html generated: 2017_10_01-AM-08_13_23
Last ObjectModification: 2017_02_28-PM-01_57_59

Theory : sets_1


Home Index