Nuprl Lemma : oal_lt_char
∀s:LOSet. ∀g:OGrp.  ((ps,qs:|oal(s;g)|. ps << qs) <≡>{|oal(s;g)|} ((ps,qs:|oal(s;g)|. ps ≤{s,g} qs)\))
Proof
Definitions occuring in Statement : 
oal_lt: ps << qs, 
oal_le: ps ≤{s,g} qs, 
oalist: oal(a;b), 
binrel_eqv: E <≡>{T} E', 
all: ∀x:A. B[x], 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|, 
s_part: E\, 
ab_binrel: x,y:T. E[x; y]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
ocgrp: OGrp, 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
xxirrefl: irrefl(T;R), 
ab_binrel: x,y:T. E[x; y], 
xxtrans: trans(T;E)
Lemmas referenced : 
ocgrp_wf, 
loset_wf, 
binrel_eqv_functionality_wrt_breqv, 
set_car_wf, 
oalist_wf, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocmon_wf, 
abdmonoid_wf, 
ab_binrel_wf, 
oal_lt_wf, 
s_part_wf, 
refl_cl_wf, 
binrel_eqv_weakening, 
sp_refl_cl_cancel, 
oal_le_wf, 
ocgrp_subtype_abdgrp, 
s_part_functionality_wrt_breqv, 
oal_le_char, 
binrel_eqv_wf, 
oal_lt_irrefl, 
irrefl_trans_imp_sasym, 
oal_lt_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.
    ((ps,qs:|oal(s;g)|.  ps  <<  qs)  <\mequiv{}>\{|oal(s;g)|\}  ((ps,qs:|oal(s;g)|.  ps  \mleq{}\{s,g\}  qs)\mbackslash{}))
Date html generated:
2016_05_16-AM-08_21_35
Last ObjectModification:
2015_12_28-PM-06_25_32
Theory : polynom_2
Home
Index