Nuprl Lemma : oal_lt_char

s:LOSet. ∀g:OGrp.  ((ps,qs:|oal(s;g)|. ps << qs) <≡>{|oal(s;g)|} ((ps,qs:|oal(s;g)|. ps ≤{s,g} qs)\))


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oal_le: ps ≤{s,g} qs oalist: oal(a;b) binrel_eqv: E <≡>{T} E' all: x:A. B[x] ocgrp: OGrp loset: LOSet set_car: |p| s_part: E\ ab_binrel: x,y:T. E[x; y]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] ocgrp: OGrp so_apply: x[s1;s2] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: xxirrefl: irrefl(T;R) ab_binrel: x,y:T. E[x; y] xxtrans: trans(T;E)
Lemmas referenced :  ocgrp_wf loset_wf binrel_eqv_functionality_wrt_breqv set_car_wf oalist_wf ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocmon_wf abdmonoid_wf ab_binrel_wf oal_lt_wf s_part_wf refl_cl_wf binrel_eqv_weakening sp_refl_cl_cancel oal_le_wf ocgrp_subtype_abdgrp s_part_functionality_wrt_breqv oal_le_char binrel_eqv_wf oal_lt_irrefl irrefl_trans_imp_sasym oal_lt_trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis addLevel sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality setElimination rename independent_functionElimination productElimination cumulativity universeEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.
    ((ps,qs:|oal(s;g)|.  ps  <<  qs)  <\mequiv{}>\{|oal(s;g)|\}  ((ps,qs:|oal(s;g)|.  ps  \mleq{}\{s,g\}  qs)\mbackslash{}))



Date html generated: 2016_05_16-AM-08_21_35
Last ObjectModification: 2015_12_28-PM-06_25_32

Theory : polynom_2


Home Index