Nuprl Lemma : es-interface-equality-prior-recursion

[Info,T:Type]. ∀[X,Y:EClass(T)].
  Y ∈ EClass(T) 
  supposing ∀es:EO+(Info). ∀e:E.  ((((X)' es e) ((Y)' es e) ∈ bag(T))  ((X es e) (Y es e) ∈ bag(T)))


Proof




Definitions occuring in Statement :  es-prior-val: (X)' eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  in-eclass_wf es-prior-interface_wf1 es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf subtype_top es-E-interface_wf bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot es-prior-interface_wf0 eclass_wf eclass-val_wf assert_functionality_wrt_uiff squash_wf true_wf es-prior-interface-equal es-locl_wf or_wf single-bag_wf eq_int_wf bag-size_wf es-causl_weakening bag_wf nat_wf es-E-interface-property eclass-val_wf2 es-prior-interface_wf assert_of_eq_int bag-only_wf2 single-valued-bag_wf less_than_wf es-prior-interface-causl iff_weakening_equal single-valued-bag-if-le1 le_weakening decidable__lt false_wf le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel is-prior-interface

Latex:
\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].
    X  =  Y  supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.    ((((X)'  es  e)  =  ((Y)'  es  e))  {}\mRightarrow{}  ((X  es  e)  =  (Y  es  e)))



Date html generated: 2015_07_21-PM-03_24_49
Last ObjectModification: 2015_02_04-PM-06_18_05

Home Index