Nuprl Lemma : es-interface-or-left-property
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
  es-interface-or-left((X | Y)) = X ∈ EClass(A) supposing Singlevalued(X)
Proof
Definitions occuring in Statement : 
es-interface-or-left: es-interface-or-left(X)
, 
es-interface-or: (X | Y)
, 
sv-class: Singlevalued(X)
, 
eclass: EClass(A[eo; e])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
eq_int_wf, 
bag-size_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nat_wf, 
bag_size_single_lemma, 
bag_only_single_lemma, 
bag-size-one, 
bag-only_wf2, 
single-valued-bag-if-le1, 
le_weakening, 
decidable__lt, 
false_wf, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
one_or_both_ind_oobboth_lemma, 
single-bag_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-equal-2, 
top_wf, 
one_or_both_oobleft_lemma, 
one_or_both_ind_oobright_lemma, 
bag-size-zero, 
empty-bag_wf, 
bag_size_empty_lemma, 
es-E_wf, 
event-ordering+_subtype, 
sv-class_wf, 
event-ordering+_wf, 
eclass_wf
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    es-interface-or-left((X  |  Y))  =  X  supposing  Singlevalued(X)
Date html generated:
2015_07_20-PM-03_24_54
Last ObjectModification:
2015_01_27-PM-10_23_45
Home
Index