Nuprl Lemma : fpf-join-assoc

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f,g,h:a:A fp-> B[a]].  (f ⊕ g ⊕ f ⊕ g ⊕ h ∈ a:A fp-> B[a])


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  set_wf l_member_wf list_wf deq_wf append_assoc append_wf squash_wf true_wf filter_append bnot_wf deq-member_wf filter_wf5 filter_filter bool_wf eqtt_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot assert-deq-member member_filter assert_wf or_wf not_wf iff_wf member_append iff_imp_equal_bool iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot equal-wf-T-base
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g,h:a:A  fp->  B[a]].    (f  \moplus{}  g  \moplus{}  h  =  f  \moplus{}  g  \moplus{}  h)



Date html generated: 2015_07_17-AM-09_19_37
Last ObjectModification: 2015_01_28-AM-07_58_08

Home Index