Nuprl Lemma : mk-extended-eo_wf
∀[Info,E:Type]. ∀[dom:E ─→ 𝔹]. ∀[l:E ─→ Id]. ∀[R:E ─→ E ─→ ℙ]. ∀[locless:E ─→ E ─→ 𝔹]. ∀[pred:E ─→ E]. ∀[rank:E ─→ ℕ].
∀[info:E ─→ Info].
  mk-extended-eo(type: E;
                 domain: dom;
                 loc: l;
                 info: info;
                 causal: R;
                 local: locless;
                 pred: pred;
                 rank: rank) ∈ EO+(Info) 
  supposing (∀x,y:E.  ((↓x R y) 
⇒ rank x < rank y))
  ∧ (∀e:E. ((l (pred e)) = (l e) ∈ Id))
  ∧ (∀e:E. (¬↓e R (pred e)))
  ∧ (∀e,x:E.  ((↓x R e) 
⇒ ((l x) = (l e) ∈ Id) 
⇒ ((↓(pred e) R e) ∧ (¬↓(pred e) R x))))
  ∧ (∀x,y,z:E.  ((↓x R y) 
⇒ (↓y R z) 
⇒ (↓x R z)))
  ∧ (∀e1,e2:E.
       (↓e1 R e2 
⇐⇒ ↑(e1 locless e2)) ∧ ((¬↓e1 R e2) 
⇒ (¬↓e2 R e1) 
⇒ (e1 = e2 ∈ E)) supposing (l e1) = (l e2) ∈ Id)
Proof
Definitions occuring in Statement : 
mk-extended-eo: mk-extended-eo, 
event-ordering+: EO+(Info)
, 
Id: Id
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
mk-eo_wf, 
event_ordering_wf, 
equal_wf, 
event_ordering_properties, 
subtype_rel_self, 
bool_wf, 
Id_wf, 
nat_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
atom_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
es-base-E_wf, 
all_wf, 
squash_wf, 
infix_ap_wf, 
less_than_wf, 
isect_wf, 
iff_wf, 
top_wf, 
eo_axioms_wf, 
record-update_wf, 
subtype_rel_dep_function, 
subtype_rel_weakening, 
ext-eq_weakening
\mforall{}[Info,E:Type].  \mforall{}[dom:E  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[l:E  {}\mrightarrow{}  Id].  \mforall{}[R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[locless:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[pred:E  {}\mrightarrow{}  E].  \mforall{}[rank:E  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[info:E  {}\mrightarrow{}  Info].
    mk-extended-eo(type:  E;
                                  domain:  dom;
                                  loc:  l;
                                  info:  info;
                                  causal:  R;
                                  local:  locless;
                                  pred:  pred;
                                  rank:  rank)  \mmember{}  EO+(Info) 
    supposing  (\mforall{}x,y:E.    ((\mdownarrow{}x  R  y)  {}\mRightarrow{}  rank  x  <  rank  y))
    \mwedge{}  (\mforall{}e:E.  ((l  (pred  e))  =  (l  e)))
    \mwedge{}  (\mforall{}e:E.  (\mneg{}\mdownarrow{}e  R  (pred  e)))
    \mwedge{}  (\mforall{}e,x:E.    ((\mdownarrow{}x  R  e)  {}\mRightarrow{}  ((l  x)  =  (l  e))  {}\mRightarrow{}  ((\mdownarrow{}(pred  e)  R  e)  \mwedge{}  (\mneg{}\mdownarrow{}(pred  e)  R  x))))
    \mwedge{}  (\mforall{}x,y,z:E.    ((\mdownarrow{}x  R  y)  {}\mRightarrow{}  (\mdownarrow{}y  R  z)  {}\mRightarrow{}  (\mdownarrow{}x  R  z)))
    \mwedge{}  (\mforall{}e1,e2:E.
              (\mdownarrow{}e1  R  e2  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(e1  locless  e2))  \mwedge{}  ((\mneg{}\mdownarrow{}e1  R  e2)  {}\mRightarrow{}  (\mneg{}\mdownarrow{}e2  R  e1)  {}\mRightarrow{}  (e1  =  e2)) 
              supposing  (l  e1)  =  (l  e2))
Date html generated:
2015_07_17-PM-00_01_31
Last ObjectModification:
2015_01_28-AM-00_40_15
Home
Index