Nuprl Lemma : sys-antecedent-fixedpoint

[Info:Type]
  ∀es:EO+(Info). ∀Sys:EClass(Top). ∀f:sys-antecedent(es;Sys). ∀e:E(Sys).
    ∃n:ℕ(((f (f^n e)) (f^n e) ∈ E(Sys)) ∧ ¬((f (f^n e)) (f^n e) ∈ E(Sys)) supposing 0 < n)


Proof




Definitions occuring in Statement :  sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) fun_exp: f^n nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a subtract: m natural_number: $n universe: Type equal: t ∈ T
Lemmas :  num-antecedents-property num-antecedents_wf all_wf es-E-interface_wf es-causle_wf event-ordering+_subtype equal_wf fun_exp_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf less_than_wf not_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_wf subtract-is-less lelt_wf
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}Sys:EClass(Top).  \mforall{}f:sys-antecedent(es;Sys).  \mforall{}e:E(Sys).
        \mexists{}n:\mBbbN{}.  (((f  (f\^{}n  e))  =  (f\^{}n  e))  \mwedge{}  \mneg{}((f  (f\^{}n  -  1  e))  =  (f\^{}n  -  1  e))  supposing  0  <  n)



Date html generated: 2015_07_17-PM-00_55_15
Last ObjectModification: 2015_01_27-PM-10_49_47

Home Index