Nuprl Lemma : num-antecedents-property

[Info:Type]. ∀[es:EO+(Info)]. ∀[Sys:EClass(Top)]. ∀[f:sys-antecedent(es;Sys)]. ∀[e:E(Sys)].
  {((f (f^#f(e) e)) (f^#f(e) e) ∈ E(Sys)) ∧ (∀[i:ℕ#f(e)]. ((f (f^i e)) (f^i e) ∈ E(Sys))))}


Proof




Definitions occuring in Statement :  num-antecedents: #f(e) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) fun_exp: f^n int_seg: {i..j-} uall: [x:A]. B[x] top: Top guard: {T} not: ¬A and: P ∧ Q apply: a natural_number: $n universe: Type equal: t ∈ T
Lemmas :  es-causl-swellfnd event-ordering+_subtype nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf fun_exp_wf int_seg_wf num-antecedents_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-eq-E_wf es-E-interface_wf bool_wf eqtt_to_assert assert-es-eq-E-2 fun_exp0_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-E_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul sys-antecedent_wf eclass_wf top_wf event-ordering+_wf and_wf in-eclass_wf assert_elim assert_wf all_wf es-causle_wf uall_wf not_wf squash_wf sq_stable__and sq_stable__equal sq_stable__uall sq_stable__not int_subtype_base fun_exp1_lemma fun_exp_add_sq equal_functionality_wrt_subtype_rel2 true_wf minus-zero fun_exp_add_apply1 iff_weakening_equal
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[Sys:EClass(Top)].  \mforall{}[f:sys-antecedent(es;Sys)].  \mforall{}[e:E(Sys)].
    \{((f  (f\^{}\#f(e)  e))  =  (f\^{}\#f(e)  e))  \mwedge{}  (\mforall{}[i:\mBbbN{}\#f(e)].  (\mneg{}((f  (f\^{}i  e))  =  (f\^{}i  e))))\}



Date html generated: 2015_07_17-PM-00_54_58
Last ObjectModification: 2015_02_04-PM-05_30_56

Home Index