Nuprl Lemma : num-antecedents_wf

[Info:Type]. ∀[es:EO+(Info)]. ∀[Sys:EClass(Top)]. ∀[f:sys-antecedent(es;Sys)]. ∀[e:E(Sys)].  (#f(e) ∈ ℕ)


Proof




Definitions occuring in Statement :  num-antecedents: #f(e) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) nat: uall: [x:A]. B[x] top: Top member: t ∈ T universe: Type
Lemmas :  es-causl-swellfnd event-ordering+_subtype nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-eq-E_wf es-E-interface_wf bool_wf eqtt_to_assert assert-es-eq-E-2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-E_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul sys-antecedent_wf eclass_wf top_wf event-ordering+_wf add-nat
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[Sys:EClass(Top)].  \mforall{}[f:sys-antecedent(es;Sys)].  \mforall{}[e:E(Sys)].
    (\#f(e)  \mmember{}  \mBbbN{})



Date html generated: 2015_07_17-PM-00_54_48
Last ObjectModification: 2015_01_27-PM-10_50_08

Home Index