Nuprl Lemma : max-of-intset

[P:ℕ ─→ ℙ]
  ((∀n:ℕDec(P[n]))
   (∀n:ℕ((∀y:ℕ. ¬P[y] supposing y ≤ n) ∨ (∃y:ℕ((y ≤ n) ∧ P[y] ∧ (∀x:ℕ. ¬P[x] supposing y < x ∧ (x ≤ n)))))))


Proof




Definitions occuring in Statement :  nat: less_than: a < b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ─→ B[x]
Lemmas :  false_wf le_wf less_than_transitivity1 less_than_irreflexivity less_than_wf all_wf isect_wf not_wf nat_wf le_antisymmetry subtype_base_sq int_subtype_base exists_wf le_weakening2 sq_stable__le le_weakening decidable__le subtract_wf equal-wf-T-base not-le-2 decidable__equal_int not-equal-2 condition-implies-le minus-one-mul add-commutes minus-add minus-minus add-associates add-swap zero-add add_functionality_wrt_le le-add-cancel or_wf le-add-cancel2
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}n:\mBbbN{}.  Dec(P[n]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                ((\mforall{}y:\mBbbN{}.  \mneg{}P[y]  supposing  y  \mleq{}  n)
                \mvee{}  (\mexists{}y:\mBbbN{}.  ((y  \mleq{}  n)  \mwedge{}  P[y]  \mwedge{}  (\mforall{}x:\mBbbN{}.  \mneg{}P[x]  supposing  y  <  x  \mwedge{}  (x  \mleq{}  n)))))))



Date html generated: 2015_07_17-AM-09_09_59
Last ObjectModification: 2015_01_27-PM-00_49_21

Home Index