Nuprl Lemma : pv11_p1_max_bnum_comm

[ldrs_uid:Id ─→ ℤ]. ∀[b1,b2:pv11_p1_Ballot_Num()].
  (pv11_p1_max_bnum(ldrs_uid) b1 b2) (pv11_p1_max_bnum(ldrs_uid) b2 b1) ∈ pv11_p1_Ballot_Num() 
  supposing Inj(Id;ℤ;ldrs_uid)


Proof




Definitions occuring in Statement :  pv11_p1_max_bnum: pv11_p1_max_bnum(ldrs_uid) pv11_p1_Ballot_Num: pv11_p1_Ballot_Num() Id: Id inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] int: equal: t ∈ T
Lemmas :  bor_wf lt_int_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_int_wf equal-wf-T-base assert_wf or_wf less_than_wf equal-wf-base int_subtype_base le_wf assert_of_le_int bnot_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_lt_int assert_of_band uiff_transitivity eqff_to_assert assert_functionality_wrt_uiff bnot_thru_bor band_wf squash_wf true_wf bnot_of_lt_int bnot_thru_band bnot_of_le_int assert_of_bnot le_antisymmetry unit_wf2

Latex:
\mforall{}[ldrs$_{uid}$:Id  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[b1,b2:pv11\_p1\_Ballot\_Num()].
    (pv11\_p1\_max\_bnum(ldrs$_{uid}$)  b1  b2)  =  (pv11\_p1\_max\_bnum(ldrs$_{\000Cuid}$)  b2  b1)  supposing  Inj(Id;\mBbbZ{};ldrs$_{uid}$)



Date html generated: 2015_07_23-PM-04_44_25
Last ObjectModification: 2015_01_29-AM-11_20_57

Home Index