Nuprl Lemma : iterate-hdf-append

[L1:Top List]. ∀[F,L2:Top].  (F*(L1 L2) F*(L1)*(L2))


Proof




Definitions occuring in Statement :  iterate-hdataflow: P*(inputs) append: as bs list: List uall: [x:A]. B[x] top: Top sqequal: t
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf top_wf equal-wf-T-base nat_wf colength_wf_list list_wf list-cases list_ind_nil_lemma iter_hdf_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_ind_cons_lemma iter_hdf_cons_lemma
\mforall{}[L1:Top  List].  \mforall{}[F,L2:Top].    (F*(L1  @  L2)  \msim{}  F*(L1)*(L2))



Date html generated: 2015_07_17-AM-08_05_08
Last ObjectModification: 2015_01_27-PM-00_16_48

Home Index