Nuprl Lemma : subset-co-regext-1
∀a:coSet{i:l}. (transitive-set(a) 
⇒ (∀x:Set{i:l}. ((x ∈ a) 
⇒ (x ∈ co-regext(a)))))
Proof
Definitions occuring in Statement : 
co-regext: co-regext(a)
, 
transitive-set: transitive-set(s)
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
mk-coset: mk-coset(T;f)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set-item: set-item(s;x)
, 
mk-set: f"(T)
, 
set-dom: set-dom(s)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
Wsup: Wsup(a;b)
, 
exists: ∃x:A. B[x]
, 
coset-relation: coSetRelation(R)
, 
guard: {T}
, 
mv-map:  R:(A 
⇒ B)
, 
top: Top
, 
setsubset: (a ⊆ b)
, 
allsetmem: ∀a∈A.P[a]
, 
cand: A c∧ B
, 
onto-map: R:(A ─>> B)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
set-induction, 
setmem_wf, 
set-subtype-coSet, 
co-regext_wf, 
Set_wf, 
subtype_coSet, 
coSet_subtype, 
setmem-iff, 
mk-set_wf, 
mk-coset_wf, 
co-regext-lemma, 
seteq_wf, 
coSet_wf, 
all_wf, 
transitive-set_wf, 
seteq_weakening, 
equal_wf, 
exists_wf, 
set-dom_wf, 
seteq_inversion, 
seteq_transitivity, 
transitive-set-iff, 
setmem-coset, 
setsubset_functionality, 
setmem_functionality, 
setmem-mk-set-sq, 
dom_mk_set_lemma, 
item_mk_set_lemma, 
setsubset-iff, 
setmem_functionality_1, 
seteq-iff-setsubset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
hypothesis_subsumption, 
productElimination, 
dependent_functionElimination, 
rename, 
universeEquality, 
dependent_pairFormation, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productEquality
Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (\mforall{}x:Set\{i:l\}.  ((x  \mmember{}  a)  {}\mRightarrow{}  (x  \mmember{}  co-regext(a)))))
Date html generated:
2019_10_31-AM-06_34_15
Last ObjectModification:
2018_08_04-AM-10_31_35
Theory : constructive!set!theory
Home
Index