Nuprl Lemma : subset-co-regext-1

a:coSet{i:l}. (transitive-set(a)  (∀x:Set{i:l}. ((x ∈ a)  (x ∈ co-regext(a)))))


Proof




Definitions occuring in Statement :  co-regext: co-regext(a) transitive-set: transitive-set(s) Set: Set{i:l} setmem: (x ∈ s) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: subtype_rel: A ⊆B so_apply: x[s] mk-coset: mk-coset(T;f) iff: ⇐⇒ Q and: P ∧ Q set-item: set-item(s;x) mk-set: f"(T) set-dom: set-dom(s) pi1: fst(t) pi2: snd(t) Wsup: Wsup(a;b) exists: x:A. B[x] coset-relation: coSetRelation(R) guard: {T} mv-map:  R:(A  B) top: Top setsubset: (a ⊆ b) allsetmem: a∈A.P[a] cand: c∧ B onto-map: R:(A ─>> B) rev_implies:  Q
Lemmas referenced :  set-induction setmem_wf set-subtype-coSet co-regext_wf Set_wf subtype_coSet coSet_subtype setmem-iff mk-set_wf mk-coset_wf co-regext-lemma seteq_wf coSet_wf all_wf transitive-set_wf seteq_weakening equal_wf exists_wf set-dom_wf seteq_inversion seteq_transitivity transitive-set-iff setmem-coset setsubset_functionality setmem_functionality setmem-mk-set-sq dom_mk_set_lemma item_mk_set_lemma setsubset-iff setmem_functionality_1 seteq-iff-setsubset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality cumulativity functionEquality hypothesisEquality applyEquality hypothesis because_Cache independent_functionElimination hypothesis_subsumption productElimination dependent_functionElimination rename universeEquality dependent_pairFormation instantiate equalityTransitivity equalitySymmetry isect_memberEquality voidElimination voidEquality independent_pairFormation productEquality

Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (\mforall{}x:Set\{i:l\}.  ((x  \mmember{}  a)  {}\mRightarrow{}  (x  \mmember{}  co-regext(a)))))



Date html generated: 2019_10_31-AM-06_34_15
Last ObjectModification: 2018_08_04-AM-10_31_35

Theory : constructive!set!theory


Home Index