Nuprl Lemma : cubical-beta

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[u:{X ⊢ _:A}].
  (app((λb); u) (b)[u] ∈ {X ⊢ _:(B)[u]})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-lambda: b) csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-lambda: b) cubical-app: app(w; u) csm-ap-term: (t)s csm-ap: (s)x cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) type-cat: TypeCat identity-trans: identity-trans(C;D;F) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] cc-adjoin-cube: (v;u) implies:  Q prop: squash: T subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cubical-type: {X ⊢ _} csm-ap-type: (AF)s pi1: fst(t)
Lemmas referenced :  cubical-term-equal csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf csm-ap-term_wf cubical-term_wf cubical-type_wf cubical-set_wf ap_mk_nat_trans_lemma cat_id_tuple_lemma list_wf coordinate_name_wf cubical-type-at_wf equal_wf I-cube_wf squash_wf true_wf cc-adjoin-cube_wf cube-set-restriction-id subtype_rel-equal cube-set-restriction_wf id-morph_wf iff_weakening_equal subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache functionExtensionality rename setElimination dependent_functionElimination voidElimination voidEquality applyEquality lambdaFormation independent_functionElimination lambdaEquality imageElimination universeEquality instantiate equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (app((\mlambda{}b);  u)  =  (b)[u])



Date html generated: 2017_10_05-AM-10_17_10
Last ObjectModification: 2017_07_28-AM-11_20_08

Theory : cubical!sets


Home Index