Nuprl Lemma : compatible-composition-disjoint
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
∀[cB:Gamma, psi ⊢ Compositon(B)].
  compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) supposing Gamma ⊢ ((phi ∧ psi) 
⇒ 0(𝔽))
Proof
Definitions occuring in Statement : 
compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
face-and: (a ∧ b)
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
cube-context-adjoin: X.A
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
Lemmas referenced : 
map-to-context-subset-disjoint, 
cube-context-adjoin_wf, 
interval-type_wf, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
context-subset_wf, 
face-and_wf, 
face-term-implies_wf, 
face-0_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-type_wf, 
context-subset-subtype-and, 
subset-cubical-type, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
csm-ap-term_wf, 
empty-context-eq-lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
interval-type-at-is-point, 
lattice-0_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
instantiate, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
Error :memTop, 
dependent_functionElimination, 
rename, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB) 
    supposing  Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  0(\mBbbF{}))
Date html generated:
2020_05_20-PM-05_15_20
Last ObjectModification:
2020_04_18-PM-06_18_00
Theory : cubical!type!theory
Home
Index