Nuprl Lemma : compatible-composition-disjoint

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
[cB:Gamma, psi ⊢ Compositon(B)].
  compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) supposing Gamma ⊢ ((phi ∧ psi)  0(𝔽))


Proof




Definitions occuring in Statement :  compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) composition-structure: Gamma ⊢ Compositon(A) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-and: (a ∧ b) face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) all: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) not: ¬A implies:  Q false: False cube-context-adjoin: X.A DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s]
Lemmas referenced :  map-to-context-subset-disjoint cube-context-adjoin_wf interval-type_wf istype-cubical-term face-type_wf cube_set_map_wf context-subset_wf face-and_wf face-term-implies_wf face-0_wf composition-structure_wf cubical-type_wf cubical_set_wf csm-ap-type_wf context-subset-subtype-and subset-cubical-type sub_cubical_set_functionality context-subset-is-subset cubical_set_cumulativity-i-j cubical-type-cumulativity2 constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 csm-ap-term_wf empty-context-eq-lemma I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma interval-type-at-is-point lattice-0_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity lattice-structure_wf bounded-lattice-axioms_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality instantiate hypothesis independent_isectElimination universeIsType inhabitedIsType applyEquality sqequalRule equalityTransitivity equalitySymmetry independent_functionElimination voidElimination Error :memTop,  dependent_functionElimination rename dependent_pairEquality_alt lambdaEquality_alt productEquality cumulativity isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB) 
    supposing  Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  0(\mBbbF{}))



Date html generated: 2020_05_20-PM-05_15_20
Last ObjectModification: 2020_04_18-PM-06_18_00

Theory : cubical!type!theory


Home Index