Nuprl Lemma : csm-equiv_comp

[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[A,E:{H ⊢ _}]. ∀[cA:H +⊢ Compositon(A)]. ∀[cE:H +⊢ Compositon(E)].
  ((equiv_comp(H;A;E;cA;cE))tau equiv_comp(K;(A)tau;(E)tau;(cA)tau;(cE)tau) ∈ K ⊢ Compositon(Equiv((A)tau;(E)tau)))


Proof




Definitions occuring in Statement :  equiv_comp: equiv_comp(H;A;E;cA;cE) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] prop: squash: T and: P ∧ Q true: True uimplies: supposing a equiv_comp: equiv_comp(H;A;E;cA;cE) cubical-equiv: Equiv(T;A) csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F compose: g implies:  Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q cubical-type: {X ⊢ _} cc-fst: p csm-ap-type: (AF)s csm+: tau+ cc-snd: q csm-adjoin: (s;u) csm-ap: (s)x pi1: fst(t) csm-ap-term: (t)s pi2: snd(t) is-cubical-equiv: IsEquiv(T;A;w)
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf cubical-fun_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cc-fst_wf cc-snd_wf cubical-fun-p composition-structure_wf cubical-type_wf cube_set_map_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe cubical-term-eqcd csm-equiv_comp-sq sigma_comp_wf2 is-cubical-equiv_wf pi_comp_wf_fun csm-comp-structure_wf cube_set_map_cumulativity-i-j fiber-comp_wf csm-comp-structure_wf2 csm-cubical-fiber subtype_rel_self iff_weakening_equal csm+_wf subtype_rel-equal csm-cubical-fun contractible_comp_wf pi_comp_wf2 contractible-type_wf cubical-pi_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule dependent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType hyp_replacement equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity universeEquality dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality setElimination rename productElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination Error :memTop,  lambdaFormation_alt independent_functionElimination

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[A,E:\{H  \mvdash{}  \_\}].  \mforall{}[cA:H  +\mvdash{}  Compositon(A)].  \mforall{}[cE:H  +\mvdash{}  Compositon(E)].
    ((equiv\_comp(H;A;E;cA;cE))tau  =  equiv\_comp(K;(A)tau;(E)tau;(cA)tau;(cE)tau))



Date html generated: 2020_05_20-PM-07_20_03
Last ObjectModification: 2020_04_27-PM-03_46_41

Theory : cubical!type!theory


Home Index