Nuprl Lemma : csm-path-ap-q_wf

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[H:j⊢]. ∀[s:H j⟶ G]. ∀[B:{G ⊢ _}]. ∀[a,b:{G, phi ⊢ _:B}]. ∀[t:{G, phi ⊢ _:(Path_B b)}].
  (csm-path-ap-q(H;G;s;t) ∈ {H.𝕀((phi)p)s+ ⊢ _:((B)p)s+})


Proof




Definitions occuring in Statement :  csm-path-ap-q: csm-path-ap-q(H;G;s;t) path-type: (Path_A b) context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 csm+: tau+ cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] csm-path-ap-q: csm-path-ap-q(H;G;s;t) member: t ∈ T all: x:A. B[x] implies:  Q csm+: tau+ csm-comp: F subtype_rel: A ⊆B uimplies: supposing a guard: {T} same-cubical-type: Gamma ⊢ B squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X)
Lemmas referenced :  csm-ap-term_wf context-subset_wf cube-context-adjoin_wf interval-type_wf face-type_wf csm-face-type cc-fst_wf_interval path-type_wf thin-context-subset context-subset-map csm+_wf_interval subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf istype-cubical-term cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cube_set_map_wf cubical_set_wf cubical-path-app_wf csm-context-subset-subtype2 csm-ap-term-wf-subset face-term-implies-same cubical-term-eqcd csm-path-type equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal subset-cubical-type context-subset-is-subset cc-snd_wf subset-cubical-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality sqequalRule Error :memTop,  inhabitedIsType lambdaFormation_alt applyEquality because_Cache independent_isectElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType lambdaEquality_alt hyp_replacement cumulativity universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].  \mforall{}[B:\{G  \mvdash{}  \_\}].  \mforall{}[a,b:\{G,  phi  \mvdash{}  \_:B\}].
\mforall{}[t:\{G,  phi  \mvdash{}  \_:(Path\_B  a  b)\}].
    (csm-path-ap-q(H;G;s;t)  \mmember{}  \{H.\mBbbI{},  ((phi)p)s+  \mvdash{}  \_:((B)p)s+\})



Date html generated: 2020_05_20-PM-05_36_54
Last ObjectModification: 2020_04_18-PM-11_05_45

Theory : cubical!type!theory


Home Index