Nuprl Lemma : csm-path-ap-q_wf
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[H:j⊢]. ∀[s:H j⟶ G]. ∀[B:{G ⊢ _}]. ∀[a,b:{G, phi ⊢ _:B}]. ∀[t:{G, phi ⊢ _:(Path_B a b)}].
  (csm-path-ap-q(H;G;s;t) ∈ {H.𝕀, ((phi)p)s+ ⊢ _:((B)p)s+})
Proof
Definitions occuring in Statement : 
csm-path-ap-q: csm-path-ap-q(H;G;s;t)
, 
path-type: (Path_A a b)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
csm-path-ap-q: csm-path-ap-q(H;G;s;t)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
csm+: tau+
, 
csm-comp: G o F
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
same-cubical-type: Gamma ⊢ A = B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
Lemmas referenced : 
csm-ap-term_wf, 
context-subset_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
path-type_wf, 
thin-context-subset, 
context-subset-map, 
csm+_wf_interval, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
istype-cubical-term, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
cubical-path-app_wf, 
csm-context-subset-subtype2, 
csm-ap-term-wf-subset, 
face-term-implies-same, 
cubical-term-eqcd, 
csm-path-type, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
subset-cubical-type, 
context-subset-is-subset, 
cc-snd_wf, 
subset-cubical-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
lambdaEquality_alt, 
hyp_replacement, 
cumulativity, 
universeEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].  \mforall{}[B:\{G  \mvdash{}  \_\}].  \mforall{}[a,b:\{G,  phi  \mvdash{}  \_:B\}].
\mforall{}[t:\{G,  phi  \mvdash{}  \_:(Path\_B  a  b)\}].
    (csm-path-ap-q(H;G;s;t)  \mmember{}  \{H.\mBbbI{},  ((phi)p)s+  \mvdash{}  \_:((B)p)s+\})
Date html generated:
2020_05_20-PM-05_36_54
Last ObjectModification:
2020_04_18-PM-11_05_45
Theory : cubical!type!theory
Home
Index