Nuprl Lemma : csm-pres-c2

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 ⊢ Compositon(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((pres-c2(G;phi;f;t;t0;cT))s
  pres-c2(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+)
  ∈ {H ⊢ _:((A)s+)[1(𝕀)][(phi)s |⟶ app((f)s+; (t)s+)[1]]})


Proof




Definitions occuring in Statement :  pres-c2: pres-c2(G;phi;f;t;t0;cT) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) partial-term-1: u[1] partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) squash: T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a csm+: tau+ csm-comp: F cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s interval-type: 𝕀 csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) pi2: snd(t) compose: g pi1: fst(t) prop: true: True partial-term-1: u[1] csm-ap-term: (t)s pres-c2: pres-c2(G;phi;f;t;t0;cT) partial-term-0: u[0] all: x:A. B[x] implies:  Q
Lemmas referenced :  pres-c2_wf context-subset-term-subtype cube-context-adjoin_wf interval-type_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset subset-cubical-term context-subset-is-subset csm-ap-type_wf cubical_set_cumulativity-i-j csm+_wf_interval cube_set_map_cumulativity-i-j csm-id-adjoin_wf-interval-1 cube_set_map_wf composition-structure_wf constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 partial-term-0_wf istype-cubical-term cubical-type_wf cubical_set_wf context-subset-map equal_wf squash_wf true_wf istype-universe csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 cubical-term-eqcd csm-cubical-app csm-comp_term subset-cubical-term2 context-adjoin-subset2 csm-cubical-fun csm+_wf csm-interval-type subtype_rel-equal cubical-term_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyLambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry applyEquality instantiate Error :memTop,  because_Cache dependent_set_memberEquality_alt equalityIstype inhabitedIsType independent_isectElimination universeIsType productElimination hyp_replacement lambdaEquality_alt universeEquality natural_numberEquality lambdaFormation_alt dependent_functionElimination cumulativity independent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  \mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((pres-c2(G;phi;f;t;t0;cT))s  =  pres-c2(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+))



Date html generated: 2020_05_20-PM-05_26_29
Last ObjectModification: 2020_04_21-PM-02_58_07

Theory : cubical!type!theory


Home Index