Nuprl Lemma : discrete-fun-bijection

[A,B:Type].  Bij({() ⊢ _:(discr(A) ⟶ discr(B))};{() ⊢ _:discr(A ⟶ B)};λf.discrete-fun(f))


Proof




Definitions occuring in Statement :  discrete-fun: discrete-fun(f) discrete-cubical-type: discr(T) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} trivial-cube-set: () biject: Bij(A;B;f) uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q member: t ∈ T prop: surject: Surj(A;B;f) cubical-term-at: u(a) uimplies: supposing a discrete-cubical-type: discr(T) cubical-fun: (A ⟶ B) top: Top cubical-fun-family: cubical-fun-family(X; A; B; I; a) squash: T so_lambda: λ2x.t[x] so_apply: x[s] discrete-fun: discrete-fun(f) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] cubical-term: {X ⊢ _:A} cc-snd: q cube-context-adjoin: X.A pi1: fst(t) pi2: snd(t) cubical-lam: cubical-lam(X;b) cubical-lambda: b) cc-adjoin-cube: (v;u)
Lemmas referenced :  equal_wf cubical-term_wf trivial-cube-set_wf discrete-cubical-type_wf discrete-fun_wf cubical-fun_wf I_cube_wf fset_wf nat_wf cubical-term-equal cubical-term-at_wf cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma all_wf names-hom_wf nh-comp_wf squash_wf true_wf cubical-type-at_wf nh-id_wf nh-id-right iff_weakening_equal cubical-lam_wf csm-discrete-cubical-type I_cube_pair_redex_lemma pi1_wf_top pi2_wf cube_set_restriction_pair_lemma cube-set-restriction_wf cube-context-adjoin_wf cubical-type-ap-morph_wf cube-set-restriction-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation sqequalRule cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality cumulativity hypothesisEquality universeEquality rename functionExtensionality equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality applyLambdaEquality setElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality lambdaEquality because_Cache applyEquality hyp_replacement natural_numberEquality independent_functionElimination productElimination dependent_pairFormation independent_pairEquality productEquality

Latex:
\mforall{}[A,B:Type].    Bij(\{()  \mvdash{}  \_:(discr(A)  {}\mrightarrow{}  discr(B))\};\{()  \mvdash{}  \_:discr(A  {}\mrightarrow{}  B)\};\mlambda{}f.discrete-fun(f))



Date html generated: 2017_10_05-AM-02_12_38
Last ObjectModification: 2017_03_02-PM-11_22_08

Theory : cubical!type!theory


Home Index