Nuprl Lemma : h-level_wf

[n:ℕ]. ∀[X:j⊢]. ∀[A:{X ⊢ _}].  X ⊢ h-level(X;n;A)


Proof




Definitions occuring in Statement :  h-level: h-level(X;n;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: h-level: h-level(X;n;A) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff or: P ∨ Q bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec-unroll subtract-1-ge-0 istype-nat contractible-type_wf cubical-type_wf cubical_set_wf subtype_base_sq bool_wf bool_subtype_base eq_int_eq_false_intro intformeq_wf int_formula_prop_eq_lemma int_subtype_base bfalse_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal assert-bnot iff_weakening_uiff assert_wf less_than_wf cubical-pi_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination isect_memberEquality_alt axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsTypeImplies because_Cache instantiate cumulativity equalityIstype applyEquality baseClosed sqequalBase closedConclusion unionElimination equalityElimination productElimination promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    X  \mvdash{}  h-level(X;n;A)



Date html generated: 2020_05_20-PM-03_35_02
Last ObjectModification: 2020_04_06-PM-07_00_21

Theory : cubical!type!theory


Home Index