Nuprl Lemma : nc-r-e'-r

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].
  (r_i ⋅ f,i=j ⋅ r_j f,i=j ∈ J+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-r: r_i add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: false: False ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self istype-void names-hom_wf fset_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-r_wf trivial-member-add-name1 nc-e'_wf equal_wf nh-comp-assoc iff_weakening_equal nh-comp_wf r-comp-r nh-id-right squash_wf true_wf istype-universe nc-e'-r subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis setIsType extract_by_obid sqequalRule functionIsType universeIsType sqequalHypSubstitution isectElimination thin applyEquality intEquality independent_isectElimination because_Cache lambdaEquality_alt natural_numberEquality hypothesisEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination instantiate universeEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    (r\_i  \mcdot{}  f,i=j  \mcdot{}  r\_j  =  f,i=j)



Date html generated: 2020_05_20-PM-01_38_09
Last ObjectModification: 2020_01_03-AM-00_25_56

Theory : cubical!type!theory


Home Index