Nuprl Lemma : r-comp-r

[I:fset(ℕ)]. ∀[i:ℕ].  (r_i ⋅ r_i 1 ∈ I+i ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-r: r_i add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nh-id: 1 top: Top compose: g nc-r: r_i names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A squash: T iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra
Lemmas referenced :  names_wf add-name_wf nat_wf fset_wf nh-comp-sq eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lattice-point_wf dM_wf nc-r_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM_inc_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf intformand_wf int_formula_prop_and_lemma dM-lift-opp iff_weakening_equal dM-lift-inc int_subtype_base squash_wf true_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dma-neg-dM_opp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache voidElimination voidEquality setElimination rename lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination applyEquality dependent_set_memberEquality intEquality lambdaEquality natural_numberEquality int_eqEquality computeAll independent_pairFormation imageElimination imageMemberEquality baseClosed universeEquality productEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (r\_i  \mcdot{}  r\_i  =  1)



Date html generated: 2017_10_05-AM-01_02_36
Last ObjectModification: 2017_07_28-AM-09_26_21

Theory : cubical!type!theory


Home Index