Nuprl Lemma : subset-iota_wf2

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].  (iota ∈ Gamma, phi j⟶ Gamma)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} subset-iota: iota cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cube_set_map: A ⟶ B cube-cat: CubeCat psc_map: A ⟶ B type-cat: TypeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) spreadn: spread4 all: x:A. B[x] member: t ∈ T functor-arrow: arrow(F) functor-ob: ob(F) context-subset: Gamma, phi pi1: fst(t) pi2: snd(t) compose: g subset-iota: iota I_cube: A(I) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cube-set-restriction: f(s) cubical_set: CubicalSet ps_context: __⊢ cat-functor: Functor(C1;C2) fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) names-hom: I ⟶ J cat-arrow: cat-arrow(C) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cat_arrow_triple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma I_cube_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf subtype_rel_self lattice-1_wf fset_wf nat_wf cube-set-restriction_wf names-hom_wf cat-ob_wf op-cat_wf cube-cat_wf cat-arrow_wf squash_wf true_wf istype-universe face-term-at-restriction-eq-1 iff_weakening_equal cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis dependent_set_memberEquality_alt lambdaEquality_alt setElimination rename hypothesisEquality setIsType universeIsType isectElimination equalityIstype applyEquality instantiate productEquality cumulativity isectEquality because_Cache independent_isectElimination inhabitedIsType equalityTransitivity equalitySymmetry lambdaFormation_alt functionExtensionality_alt functionIsType productElimination universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (iota  \mmember{}  Gamma,  phi  j{}\mrightarrow{}  Gamma)



Date html generated: 2020_05_20-PM-02_45_29
Last ObjectModification: 2020_04_04-PM-05_00_04

Theory : cubical!type!theory


Home Index