Nuprl Lemma : uabeta_aux_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (uabeta_aux(G;A;B;f) ∈ {G.decode(A) ⊢ _:let app(equiv-fun((f)p); q) in
                                           let b' transprt-const(G.decode(A);(CompFun(B))p;b) in
                                           let b'' transprt-const(G.decode(A);(CompFun(B))p;b') in
                                           (Path_(decode(B))p b'' b)})


Proof




Definitions occuring in Statement :  uabeta_aux: uabeta_aux(G;A;B;f) universe-comp-fun: CompFun(A) universe-decode: decode(t) cubical-universe: c𝕌 transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-app: app(w; u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical_set: CubicalSet let: let uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uabeta_aux: uabeta_aux(G;A;B;f) uimplies: supposing a all: x:A. B[x] implies:  Q let: let composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) squash: T prop: true: True
Lemmas referenced :  universe-decode_wf csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf transprt-const_wf csm-ap-type_wf csm-comp-structure_wf2 universe-comp-fun_wf cubical-app_wf_fun equiv-fun_wf csm-ap-term_wf cubical-equiv-p cubical-term-eqcd cc-snd_wf istype-cubical-term cubical-equiv_wf istype-cubical-universe-term cubical_set_wf csm-universe-decode subtype_rel_self composition-structure_wf trans-const-path_wf squash_wf true_wf cubical-type_wf path-type_wf comp_path_wf subset-cubical-term2 sub_cubical_set_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination Error :memTop,  rename imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (uabeta\_aux(G;A;B;f)  \mmember{}  \{G.decode(A)  \mvdash{}  \_:let  b  =  app(equiv-fun((f)p);  q)  in
                                                                                      let  b'  =  transprt-const(G.decode(A);(CompFun(B))p;b)  in
                                                                                      let  b''  =  transprt-const(G.decode(A);(CompFun(B))p;b')  in
                                                                                      (Path\_(decode(B))p  b''  b)\})



Date html generated: 2020_05_20-PM-07_42_17
Last ObjectModification: 2020_05_01-AM-09_50_23

Theory : cubical!type!theory


Home Index