Nuprl Lemma : uabeta_aux_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (uabeta_aux(G;A;B;f) ∈ {G.decode(A) ⊢ _:let b = app(equiv-fun((f)p); q) in
                                           let b' = transprt-const(G.decode(A);(CompFun(B))p;b) in
                                           let b'' = transprt-const(G.decode(A);(CompFun(B))p;b') in
                                           (Path_(decode(B))p b'' b)})
Proof
Definitions occuring in Statement : 
uabeta_aux: uabeta_aux(G;A;B;f), 
universe-comp-fun: CompFun(A), 
universe-decode: decode(t), 
cubical-universe: c𝕌, 
transprt-const: transprt-const(G;cA;a), 
csm-comp-structure: (cA)tau, 
equiv-fun: equiv-fun(f), 
cubical-equiv: Equiv(T;A), 
path-type: (Path_A a b), 
cubical-app: app(w; u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical_set: CubicalSet, 
let: let, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uabeta_aux: uabeta_aux(G;A;B;f), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
let: let, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
squash: ↓T, 
prop: ℙ, 
true: True
Lemmas referenced : 
universe-decode_wf, 
csm-ap-term-universe, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
transprt-const_wf, 
csm-ap-type_wf, 
csm-comp-structure_wf2, 
universe-comp-fun_wf, 
cubical-app_wf_fun, 
equiv-fun_wf, 
csm-ap-term_wf, 
cubical-equiv-p, 
cubical-term-eqcd, 
cc-snd_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
csm-universe-decode, 
subtype_rel_self, 
composition-structure_wf, 
trans-const-path_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
path-type_wf, 
comp_path_wf, 
subset-cubical-term2, 
sub_cubical_set_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
Error :memTop, 
rename, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (uabeta\_aux(G;A;B;f)  \mmember{}  \{G.decode(A)  \mvdash{}  \_:let  b  =  app(equiv-fun((f)p);  q)  in
                                                                                      let  b'  =  transprt-const(G.decode(A);(CompFun(B))p;b)  in
                                                                                      let  b''  =  transprt-const(G.decode(A);(CompFun(B))p;b')  in
                                                                                      (Path\_(decode(B))p  b''  b)\})
Date html generated:
2020_05_20-PM-07_42_17
Last ObjectModification:
2020_05_01-AM-09_50_23
Theory : cubical!type!theory
Home
Index