Nuprl Lemma : adjacent-right-angles-supplementary-using-geom-tactic

e:EuclideanPlane. ∀a,b,c,d:Point.  (c-b-d  a ≠  (Rabc ⇐⇒ abc ≅a abd))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane right-angle: Rabc geo-strict-between: a-b-c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q basic-geometry: BasicGeometry exists: x:A. B[x] basic-geometry-: BasicGeometry- cand: c∧ B geo-cong-angle: abc ≅a xyz right-angle: Rabc geo-midpoint: a=m=b uiff: uiff(P;Q)
Lemmas referenced :  right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-sep_wf geo-strict-between_wf geo-point_wf symmetric-point-construction geo-sep-sym geo-strict-between-sep2 geo-strict-between-sym geo-strict-between-implies-colinear geo-colinear_wf right-angle-colinear2 geo-colinear-symmetry right-angle-symmetry geo-right-angles-congruent geo-cong-angle-symmetry geo-congruent-flip geo-congruent_wf geo-congruent-refl geo-inner-five-segment geo-between_wf geo-between-symmetry geo-congruent-full-symmetry geo-construction-unicity geo-eq_wf geo-congruent_functionality geo-eq_weakening geo-between_functionality geo-between-sep geo-between-implies-colinear right-angle-colinear geo-strict-between-implies-between geo-between-outer-trans geo-between-exchange4 geo-congruent-iff-length geo-length-flip symmetric-point-unicity geo-midpoint_wf geo-midpoint-symmetry geo-midpoint_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination independent_functionElimination productElimination rename isectIsType functionIsType productIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (c-b-d  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (Rabc  \mLeftarrow{}{}\mRightarrow{}  abc  \mcong{}\msuba{}  abd))



Date html generated: 2019_10_16-PM-01_55_09
Last ObjectModification: 2018_11_07-PM-01_03_07

Theory : euclidean!plane!geometry


Home Index