Nuprl Lemma : adjacent-right-angles-supplementary-using-geom-tactic
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (c-b-d 
⇒ a ≠ b 
⇒ (Rabc 
⇐⇒ abc ≅a abd))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
right-angle: Rabc
, 
geo-strict-between: a-b-c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
basic-geometry: BasicGeometry
, 
exists: ∃x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
cand: A c∧ B
, 
geo-cong-angle: abc ≅a xyz
, 
right-angle: Rabc
, 
geo-midpoint: a=m=b
, 
uiff: uiff(P;Q)
Lemmas referenced : 
right-angle_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
geo-sep_wf, 
geo-strict-between_wf, 
geo-point_wf, 
symmetric-point-construction, 
geo-sep-sym, 
geo-strict-between-sep2, 
geo-strict-between-sym, 
geo-strict-between-implies-colinear, 
geo-colinear_wf, 
right-angle-colinear2, 
geo-colinear-symmetry, 
right-angle-symmetry, 
geo-right-angles-congruent, 
geo-cong-angle-symmetry, 
geo-congruent-flip, 
geo-congruent_wf, 
geo-congruent-refl, 
geo-inner-five-segment, 
geo-between_wf, 
geo-between-symmetry, 
geo-congruent-full-symmetry, 
geo-construction-unicity, 
geo-eq_wf, 
geo-congruent_functionality, 
geo-eq_weakening, 
geo-between_functionality, 
geo-between-sep, 
geo-between-implies-colinear, 
right-angle-colinear, 
geo-strict-between-implies-between, 
geo-between-outer-trans, 
geo-between-exchange4, 
geo-congruent-iff-length, 
geo-length-flip, 
symmetric-point-unicity, 
geo-midpoint_wf, 
geo-midpoint-symmetry, 
geo-midpoint_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
rename, 
isectIsType, 
functionIsType, 
productIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (c-b-d  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (Rabc  \mLeftarrow{}{}\mRightarrow{}  abc  \mcong{}\msuba{}  abd))
Date html generated:
2019_10_16-PM-01_55_09
Last ObjectModification:
2018_11_07-PM-01_03_07
Theory : euclidean!plane!geometry
Home
Index