Nuprl Lemma : geo-colinear-between

e:BasicGeometry. ∀[A,B,C,D:Point].  (Colinear(A;C;D)) supposing (A ≠ and B ≠ and A_C_B and A_D_B)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  geo-colinear: Colinear(a;b;c) subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs basic-geometry-: BasicGeometry- so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B exists: x:A. B[x] implies:  Q guard: {T} prop: and: P ∧ Q oriented-plane: OrientedPlane euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-between_wf not_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma list_ind_cons_lemma geo-between-implies-colinear geo-colinear-is-colinear-set exists_wf geo-sep_wf equal_wf l_member_wf cons_member geo-sep-sym nil_wf geo-primitives_wf euclidean-plane_wf basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype euclidean-plane-subtype geo-point_wf cons_wf geo-left-axioms_wf euclidean-plane-structure-subtype basic-geo-axioms_wf euclidean-plane-structure_wf subtype_rel_self oriented-colinear-append
Rules used in proof :  equalitySymmetry equalityTransitivity baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality lambdaEquality inrFormation inlFormation productElimination independent_pairFormation dependent_pairFormation independent_functionElimination independent_isectElimination because_Cache cumulativity productEquality hypothesis setEquality isectElimination instantiate sqequalRule applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry
    \mforall{}[A,B,C,D:Point].    (Colinear(A;C;D))  supposing  (A  \mneq{}  C  and  B  \mneq{}  A  and  A\_C\_B  and  A\_D\_B)



Date html generated: 2017_10_02-PM-06_19_54
Last ObjectModification: 2017_08_05-PM-04_37_15

Theory : euclidean!plane!geometry


Home Index