Nuprl Lemma : not-lt-or

g:EuclideanPlane. ∀p,q:Length.  (¬¬(p < q ∨ q < p ∨ (p q ∈ Length)))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length-type: Length euclidean-plane: EuclideanPlane all: x:A. B[x] not: ¬A or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  geo-le: p ≤ q squash: T true: True rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] geo-lt: p < q iff: ⇐⇒ Q geo-eq: a ≡ b stable: Stable{P} cand: c∧ B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] euclidean-plane: EuclideanPlane uimplies: supposing a guard: {T} subtype_rel: A ⊆B and: P ∧ Q quotient: x,y:A//B[x; y] geo-length-type: Length prop: basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q false: False implies:  Q not: ¬A all: x:A. B[x]
Lemmas referenced :  geo-length_functionality geo-eq_inversion or_wf geo-length-equality squash_wf true_wf basic-geometry_wf geo-length-flip subtype_rel_self iff_weakening_equal geo-between-trivial geo-add-length-between geo-le_wf geo-add-length_wf geo-length_wf geo-mk-seg_wf exists_wf equal_wf minimal-not-not-excluded-middle geo-eq_weakening geo-between_functionality minimal-double-negation-hyp-elim not_wf geo-sep_wf stable__false geo-sep-O-X geo-between-same-side2 geo-length-equiv subtype_quotient geo-X_wf geo-O_wf geo-between_wf geo-point_wf geo-primitives_wf euclidean-plane-structure_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-eq_wf false_wf euclidean-plane_wf geo-length-type_wf istype-void geo-lt_wf
Rules used in proof :  dependent_set_memberEquality_alt inrFormation_alt dependent_set_memberEquality imageMemberEquality baseClosed imageElimination universeEquality natural_numberEquality dependent_pairFormation productEquality lambdaEquality inrFormation inlFormation lambdaFormation unionElimination functionEquality unionEquality independent_pairFormation lambdaEquality_alt setEquality dependent_functionElimination setIsType rename setElimination applyLambdaEquality independent_isectElimination instantiate applyEquality sqequalBase equalitySymmetry equalityTransitivity productIsType productElimination promote_hyp pertypeElimination pointwiseFunctionalityForEquality inhabitedIsType equalityIstype hypothesisEquality isectElimination extract_by_obid introduction universeIsType unionIsType functionIsType sqequalRule voidElimination independent_functionElimination sqequalHypSubstitution hypothesis because_Cache thin cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:Length.    (\mneg{}\mneg{}(p  <  q  \mvee{}  q  <  p  \mvee{}  (p  =  q)))



Date html generated: 2019_10_29-AM-09_16_11
Last ObjectModification: 2019_10_18-PM-03_23_12

Theory : euclidean!plane!geometry


Home Index