Nuprl Lemma : p_inf-l_eu-sep-exists

eu:EuclideanParPlane. ∀p:l,m:Line//l || m. ∀m:Line.  ((m p ∈ (l,m:Line//l || m))  (∃L:Line. || L)))


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-line: Line quotient: x,y:A//B[x; y] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] euclidean-parallel-plane: EuclideanParPlane so_apply: x[s1;s2] geo-line: Line exists: x:A. B[x] geo-equilateral: EQΔ(a;b;c) and: P ∧ Q not: ¬A geo-Aparallel: || m false: False iff: ⇐⇒ Q rev_implies:  Q pi1: fst(t) pi2: snd(t) geo-lsep: bc or: P ∨ Q cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) select: L[n] cons: [a b] subtract: m so_lambda: λ2x.t[x] so_apply: x[s] geo-strict-between: a-b-c
Lemmas referenced :  equal_wf quotient_wf geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-Aparallel_wf geoline-subtype1 geo-Aparallel-equiv subtype_quotient Euclid-Prop1 lsep-implies-sep geo-sep_wf geo-point_wf not_wf geo-intersect-lines left-symmetry euclidean-plane-subtype-basic basic-geometry_wf geo-sep-sym geo-colinear-is-colinear-set geo-strict-between-implies-colinear geo-colinear-same geo-colinear_wf geo-left_wf exists_wf geo-proper-extend-exists left-between-implies-right2 euclidean-plane-subtype-oriented oriented-plane_wf left-between-implies-right1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule lambdaEquality setElimination rename because_Cache productElimination independent_functionElimination dependent_pairFormation dependent_pairEquality productEquality voidElimination unionElimination independent_pairFormation

Latex:
\mforall{}eu:EuclideanParPlane.  \mforall{}p:l,m:Line//l  ||  m.  \mforall{}m:Line.    ((m  =  p)  {}\mRightarrow{}  (\mexists{}L:Line.  (\mneg{}m  ||  L)))



Date html generated: 2018_05_22-PM-01_15_37
Last ObjectModification: 2018_05_12-AM-09_04_57

Theory : euclidean!plane!geometry


Home Index