Nuprl Lemma : ip-between-rless

rv:InnerProductSpace. ∀a,b,c:Point.  (a_b_c   (||a b|| < ||a c||))


Proof




Definitions occuring in Statement :  ip-between: a_b_c rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rless: x < y ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T} and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  ip-dist-between ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-between_wf ss-point_wf rv-norm_wf rv-sub_wf real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf radd_wf rv-sep-iff-norm radd-preserves-rless rless_functionality req_weakening radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality instantiate sqequalRule because_Cache lambdaEquality setElimination rename setEquality productEquality natural_numberEquality dependent_functionElimination productElimination independent_functionElimination promote_hyp

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  (||a  -  b||  <  ||a  -  c||))



Date html generated: 2017_10_05-AM-00_01_46
Last ObjectModification: 2017_03_13-PM-11_03_20

Theory : inner!product!spaces


Home Index