Nuprl Lemma : ip-between-rless
∀rv:InnerProductSpace. ∀a,b,c:Point.  (a_b_c 
⇒ b # c 
⇒ (||a - b|| < ||a - c||))
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rless: x < y
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
ip-dist-between, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ip-between_wf, 
ss-point_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
radd_wf, 
rv-sep-iff-norm, 
radd-preserves-rless, 
rless_functionality, 
req_weakening, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
instantiate, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
promote_hyp
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  (||a  -  b||  <  ||a  -  c||))
Date html generated:
2017_10_05-AM-00_01_46
Last ObjectModification:
2017_03_13-PM-11_03_20
Theory : inner!product!spaces
Home
Index