Nuprl Lemma : ip-congruent-sep
∀rv:InnerProductSpace. ∀a,b,c:Point. ∀d:{d:Point| ab=cd} .  (a # b 
⇒ c # d)
Proof
Definitions occuring in Statement : 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
sq_stable: SqStable(P)
, 
req: x = y
, 
ip-congruent: ab=cd
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rv-sep-iff-norm, 
sq_stable__req, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
rless_transitivity1, 
rleq_weakening, 
ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
set_wf, 
ss-point_wf, 
ip-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
isectElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
instantiate
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.  \mforall{}d:\{d:Point|  ab=cd\}  .    (a  \#  b  {}\mRightarrow{}  c  \#  d)
Date html generated:
2017_10_04-PM-11_56_50
Last ObjectModification:
2017_03_15-PM-04_42_49
Theory : inner!product!spaces
Home
Index