Nuprl Lemma : rv-ip-rneq-0
∀rv:InnerProductSpace. ∀a,b:Point.  (a ⋅ b ≠ r0 
⇒ (a # 0 ∧ b # 0))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
false: False
Lemmas referenced : 
rv-Cauchy-Schwarz', 
rneq_wf, 
rv-ip_wf, 
int-to-real_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rabs-neq-zero, 
rless_transitivity1, 
rabs_wf, 
rmul_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rmul-is-positive, 
rv-norm-positive-iff, 
rv-norm-nonneg, 
rless_irreflexivity
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
productElimination, 
unionElimination, 
because_Cache, 
independent_pairFormation, 
voidElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.    (a  \mcdot{}  b  \mneq{}  r0  {}\mRightarrow{}  (a  \#  0  \mwedge{}  b  \#  0))
Date html generated:
2017_10_04-PM-11_52_19
Last ObjectModification:
2017_06_21-PM-11_24_25
Theory : inner!product!spaces
Home
Index