Nuprl Lemma : rv-ip-rneq-0

rv:InnerProductSpace. ∀a,b:Point.  (a ⋅ b ≠ r0  (a 0 ∧ 0))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 rneq: x ≠ y int-to-real: r(n) ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q cand: c∧ B rev_implies:  Q false: False
Lemmas referenced :  rv-Cauchy-Schwarz' rneq_wf rv-ip_wf int-to-real_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rabs-neq-zero rless_transitivity1 rabs_wf rmul_wf rv-norm_wf real_wf rleq_wf req_wf rmul-is-positive rv-norm-positive-iff rv-norm-nonneg rless_irreflexivity
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination independent_functionElimination lambdaEquality setElimination rename setEquality productEquality productElimination unionElimination because_Cache independent_pairFormation voidElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.    (a  \mcdot{}  b  \mneq{}  r0  {}\mRightarrow{}  (a  \#  0  \mwedge{}  b  \#  0))



Date html generated: 2017_10_04-PM-11_52_19
Last ObjectModification: 2017_06_21-PM-11_24_25

Theory : inner!product!spaces


Home Index