Nuprl Lemma : empty-sum-in-vs

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:Top].  Σ{f[i] n≤i≤m} 0 ∈ Point(vs) supposing m < n


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sum-in-vs: Σ{f[i] n≤i≤m} and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] from-upto: [n, m) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q empty-bag: {} nil: [] vs-bag-add: Σ{f[b] b ∈ bs} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum vs-0: 0 record-select: r.x rng: Rng
Lemmas referenced :  subtype_base_sq list_wf le_wf less_than_wf list_subtype_base set_subtype_base int_subtype_base lt_int_wf eqtt_to_assert assert_of_lt_int full-omega-unsat intformand_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf istype-less_than nil_wf vs-0_wf istype-top vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity setEquality intEquality productEquality hypothesisEquality hypothesis addEquality natural_numberEquality independent_isectElimination sqequalRule lambdaEquality_alt inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType equalityIstype promote_hyp setElimination rename axiomEquality isectIsTypeImplies

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:Top].    \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  =  0  supposing  m  <  n



Date html generated: 2019_10_31-AM-06_26_03
Last ObjectModification: 2019_08_13-PM-05_02_22

Theory : linear!algebra


Home Index