Nuprl Lemma : vs-lift_wf-relative
∀[S,T:Type].
  ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].
    λx.vs-lift(vs;f;x) ∈ relative-free-vs(K;S;T) ⟶ vs supposing ∀t:T. (↓(f t) = 0 ∈ Point(vs)) 
  supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
relative-free-vs: relative-free-vs(K;S;T)
, 
vs-lift: vs-lift(vs;f;fs)
, 
vs-map: A ⟶ B
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
crng: CRng
, 
rng: Rng
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
prop: ℙ
, 
relative-free-vs: relative-free-vs(K;S;T)
, 
so_lambda: λ2x.t[x]
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
free-vs: free-vs(K;S)
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
istype: istype(T)
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-map: A ⟶ B
, 
sub-vs: (v:vs | P[v])
Lemmas referenced : 
squash_wf, 
equal_wf, 
vs-point_wf, 
vs-0_wf, 
vector-space_wf, 
crng_wf, 
strong-subtype_wf, 
istype-universe, 
vs-lift_wf-vs-map, 
fs-in-subtype-subspace, 
vs-map-quotient, 
free-vs_wf, 
fs-in-subtype_wf, 
subtype_rel_self, 
formal-sum_wf, 
rec_select_update_lemma, 
istype-void, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
fs-in-subtype-basic, 
subtype_quotient, 
bfs-equiv-rel, 
true_wf, 
vs-lift_wf2, 
iff_weakening_equal, 
subtype_rel_dep_function, 
free-vs-map-into-subspace, 
rng_car_wf, 
vs-lift-inc, 
vs-zero-add, 
vs-zero-mul, 
vs-add_wf, 
rng_sig_wf, 
vs-mul_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
productElimination, 
dependent_functionElimination, 
inhabitedIsType, 
instantiate, 
universeEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
productIsType, 
equalityIstype, 
sqequalBase, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[S,T:Type].
    \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
        \mlambda{}x.vs-lift(vs;f;x)  \mmember{}  relative-free-vs(K;S;T)  {}\mrightarrow{}  vs  supposing  \mforall{}t:T.  (\mdownarrow{}(f  t)  =  0) 
    supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_31_36
Last ObjectModification:
2019_08_20-PM-05_16_55
Theory : linear!algebra
Home
Index