Nuprl Lemma : vs-lift_wf-relative

[S,T:Type].
  ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].
    λx.vs-lift(vs;f;x) ∈ relative-free-vs(K;S;T) ⟶ vs supposing ∀t:T. (↓(f t) 0 ∈ Point(vs)) 
  supposing strong-subtype(T;S)


Proof




Definitions occuring in Statement :  relative-free-vs: relative-free-vs(K;S;T) vs-lift: vs-lift(vs;f;fs) vs-map: A ⟶ B vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] squash: T member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] crng: CRng rng: Rng subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B prop: relative-free-vs: relative-free-vs(K;S;T) so_lambda: λ2x.t[x] vs-point: Point(vs) record-select: r.x free-vs: free-vs(K;S) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] so_apply: x[s] implies:  Q top: Top and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T exists: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q istype: istype(T) vs-subspace: vs-subspace(K;vs;x.P[x]) vs-map: A ⟶ B sub-vs: (v:vs P[v])
Lemmas referenced :  squash_wf equal_wf vs-point_wf vs-0_wf vector-space_wf crng_wf strong-subtype_wf istype-universe vs-lift_wf-vs-map fs-in-subtype-subspace vs-map-quotient free-vs_wf fs-in-subtype_wf subtype_rel_self formal-sum_wf rec_select_update_lemma istype-void basic-formal-sum_wf bfs-equiv_wf fs-in-subtype-basic subtype_quotient bfs-equiv-rel true_wf vs-lift_wf2 iff_weakening_equal subtype_rel_dep_function free-vs-map-into-subspace rng_car_wf vs-lift-inc vs-zero-add vs-zero-mul vs-add_wf rng_sig_wf vs-mul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis sqequalRule functionIsType universeIsType hypothesisEquality introduction extract_by_obid isectElimination thin setElimination rename because_Cache applyEquality productElimination dependent_functionElimination inhabitedIsType instantiate universeEquality independent_isectElimination lambdaEquality_alt equalityTransitivity equalitySymmetry lambdaFormation_alt isect_memberEquality_alt voidElimination pointwiseFunctionalityForEquality pertypeElimination promote_hyp productIsType equalityIstype sqequalBase imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination independent_pairFormation

Latex:
\mforall{}[S,T:Type].
    \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
        \mlambda{}x.vs-lift(vs;f;x)  \mmember{}  relative-free-vs(K;S;T)  {}\mrightarrow{}  vs  supposing  \mforall{}t:T.  (\mdownarrow{}(f  t)  =  0) 
    supposing  strong-subtype(T;S)



Date html generated: 2019_10_31-AM-06_31_36
Last ObjectModification: 2019_08_20-PM-05_16_55

Theory : linear!algebra


Home Index