Nuprl Lemma : presheaf-type-ap-morph-id

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[I:cat-ob(C)]. ∀[f:cat-arrow(C) I]. ∀[a:X(I)]. ∀[u:A(a)].
  (u f) u ∈ A(a) supposing (cat-id(C) I) ∈ (cat-arrow(C) I)


Proof




Definitions occuring in Statement :  presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True presheaf-type: {X ⊢ _} presheaf-type-ap-morph: (u f) all: x:A. B[x] pi2: snd(t)
Lemmas referenced :  equal_wf presheaf-type-at_wf presheaf-type-ap-morph_wf subtype_rel-equal psc-restriction_wf small-category-cumulativity-2 ps_context_cumulativity2 squash_wf true_wf istype-universe I_set_wf psc-restriction-when-id subtype_rel_self iff_weakening_equal cat-id_wf cat-arrow_wf cat-ob_wf presheaf-type_wf ps_context_wf small-category_wf presheaf_type_at_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt hypothesis because_Cache equalityIstype hypothesisEquality equalityTransitivity equalitySymmetry thin hyp_replacement applyLambdaEquality setElimination rename extract_by_obid sqequalHypSubstitution isectElimination applyEquality instantiate sqequalRule independent_isectElimination lambdaEquality_alt imageElimination universeIsType universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination natural_numberEquality inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies dependent_functionElimination Error :memTop

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  I  I].
\mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (u  a  f)  =  u  supposing  f  =  (cat-id(C)  I)



Date html generated: 2020_05_20-PM-01_26_03
Last ObjectModification: 2020_04_01-PM-00_01_24

Theory : presheaf!models!of!type!theory


Home Index