Nuprl Lemma : ps-sigma-unelim-elim-term

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[T:{X.Σ B ⊢ _}]. ∀[t:{X.Σ B ⊢ _:T}].
  (((t)SigmaUnElim)SigmaElim t ∈ {X.Σ B ⊢ _:T})


Proof




Definitions occuring in Statement :  sigma-unelim-pscm: SigmaUnElim sigma-elim-pscm: SigmaElim presheaf-sigma: Σ B psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B squash: T prop: psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] cat-comp: cat-comp(C) compose: g uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  ps-sigma-elim-unelim presheaf-term_wf2 psc-adjoin_wf ps_context_cumulativity2 presheaf-sigma_wf presheaf-type-cumulativity2 presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf equal_wf squash_wf true_wf istype-universe pscm-ap-type-is-id subtype_rel_self psc_map_wf pscm-id_wf iff_weakening_equal pscm-ap-term_wf pscm-ap-comp-term sigma-elim-pscm_wf sigma-unelim-pscm_wf pscm-ap-id-term
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType applyLambdaEquality universeIsType instantiate applyEquality because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies setElimination rename productElimination lambdaEquality_alt imageElimination universeEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination hyp_replacement

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[T:\{X.\mSigma{}  A  B  \mvdash{}  \_\}].
\mforall{}[t:\{X.\mSigma{}  A  B  \mvdash{}  \_:T\}].
    (((t)SigmaUnElim)SigmaElim  =  t)



Date html generated: 2020_05_20-PM-01_32_54
Last ObjectModification: 2020_04_03-AM-01_00_56

Theory : presheaf!models!of!type!theory


Home Index