Nuprl Lemma : rat-cube-complex-polyhedron-compact1

k:ℕ. ∀K:ℚCube(k) List.  (0 < ||K||  (∀c∈K.↑Inhabited(c))  mcompact(|K|;rn-prod-metric(k)))


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) mcompact: mcompact(X;d) l_all: (∀x∈L.P[x]) length: ||as|| list: List nat: assert: b less_than: a < b all: x:A. B[x] implies:  Q natural_number: $n inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k)
Definitions unfolded in proof :  l_exists: (∃x∈L. P[x]) rat-cube-complex-polyhedron: |K| ext-eq: A ≡ B iff: ⇐⇒ Q stable-union: Error :stable-union,  subtype_rel: A ⊆B l_all: (∀x∈L.P[x]) so_apply: x[s] so_lambda: λ2x.t[x] rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) so_apply: x[s1;s2] prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} so_lambda: λ2y.t[x; y] member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  l_exists_wf metric-on-subtype rat-cube-complex-polyhedron_wf Error :stable-union_wf,  mcompact_functionality mcompact-rat-cube istype-nat list_wf istype-less_than l_member_wf inhabited-rat-cube_wf assert_wf l_all_wf2 mcomplete-rn-prod-metric nsub_finite meq_wf in-rat-cube_functionality int_formula_prop_less_lemma intformless_wf istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf in-rat-cube_wf rational-cube_wf length_wf int_seg_wf rn-prod-metric_wf real-vec_wf mcompact-stable-union
Rules used in proof :  functionIsType applyEquality closedConclusion productIsType setIsType dependent_set_memberEquality_alt universeIsType independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination imageElimination productElimination independent_isectElimination rename setElimination because_Cache lambdaEquality_alt sqequalRule natural_numberEquality dependent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:\mBbbQ{}Cube(k)  List.    (0  <  ||K||  {}\mRightarrow{}  (\mforall{}c\mmember{}K.\muparrow{}Inhabited(c))  {}\mRightarrow{}  mcompact(|K|;rn-prod-metric(k)))



Date html generated: 2019_10_31-AM-06_03_59
Last ObjectModification: 2019_10_30-AM-11_45_41

Theory : real!vectors


Home Index