Nuprl Lemma : mcompact-stable-union

[X:Type]
  ∀d:metric(X)
    ∀[T:Type]. ∀[P:T ⟶ X ⟶ ℙ].
      finite(T)  mcomplete(X with d)  (∀i:T. mcompact({x:X| P[i;x]} ;d))   mcompact(stable-union(X;T;i,x.P[i;x\000C]);d) 
      supposing ∀i:T. ∀x,y:X.  (P[i;x]  y ≡  P[i;y])


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) mcomplete: mcomplete(M) mk-metric-space: with d meq: x ≡ y metric: metric(X) finite: finite(T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  true: True surject: Surj(A;B;f) biject: Bij(A;B;f) sq_exists: x:A [B[x]] rless: x < y less_than': less_than'(a;b) equipollent: B finite: finite(T) so_apply: x[s] so_lambda: λ2x.t[x] pi1: fst(t) squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} guard: {T} rneq: x ≠ y nat_plus: + prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q stable-union: Error :stable-union,  subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] mcompact: mcompact(X;d) implies:  Q uimplies: supposing a all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rless_irreflexivity rless_transitivity1 real_wf iff_weakening_equal subtype_rel_sets_simple true_wf squash_wf equal_wf rleq_weakening_rless int_seg-case rless-int-fractions rless-cases istype-less_than nat_plus_properties istype-false equipollent_inversion nat_plus_subtype_nat nsub_finite finite-product rless_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_seg_properties rless-int int-to-real_wf rdiv_wf mdist_wf rleq_wf nat_plus_wf int_seg_wf istype-universe metric_wf meq_wf subtype_rel_self finite_wf mk-metric-space_wf mcomplete_wf mcompact_wf istype-nat istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties metric-on-subtype Error :stable-union_wf,  m-TB-iff mcomplete-stable-union
Rules used in proof :  baseClosed imageMemberEquality hyp_replacement spreadEquality inlFormation_alt applyLambdaEquality dependent_pairEquality_alt equalitySymmetry equalityTransitivity equalityIstype imageElimination inrFormation_alt closedConclusion productIsType functionExtensionality universeEquality instantiate functionIsType promote_hyp voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination addEquality natural_numberEquality multiplyEquality dependent_set_memberEquality_alt setIsType setEquality setElimination inhabitedIsType universeIsType applyEquality lambdaEquality_alt sqequalRule because_Cache productElimination dependent_functionElimination independent_pairFormation rename independent_functionElimination independent_isectElimination lambdaFormation_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
            finite(T)
            {}\mRightarrow{}  mcomplete(X  with  d)
            {}\mRightarrow{}  (\mforall{}i:T.  mcompact(\{x:X|  P[i;x]\}  ;d))
            {}\mRightarrow{}  T
            {}\mRightarrow{}  mcompact(stable-union(X;T;i,x.P[i;x]);d) 
            supposing  \mforall{}i:T.  \mforall{}x,y:X.    (P[i;x]  {}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[i;y])



Date html generated: 2019_10_30-AM-07_14_15
Last ObjectModification: 2019_10_25-PM-09_57_41

Theory : reals


Home Index