Nuprl Lemma : mcompact-stable-union
∀[X:Type]
  ∀d:metric(X)
    ∀[T:Type]. ∀[P:T ⟶ X ⟶ ℙ].
      finite(T) 
⇒ mcomplete(X with d) 
⇒ (∀i:T. mcompact({x:X| P[i;x]} d)) 
⇒ T 
⇒ mcompact(stable-union(X;T;i,x.P[i;x\000C]);d) 
      supposing ∀i:T. ∀x,y:X.  (P[i;x] 
⇒ y ≡ x 
⇒ P[i;y])
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
meq: x ≡ y
, 
metric: metric(X)
, 
finite: finite(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
true: True
, 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
less_than': less_than'(a;b)
, 
equipollent: A ~ B
, 
finite: finite(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
stable-union: Error :stable-union, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
mcompact: mcompact(X;d)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rless_irreflexivity, 
rless_transitivity1, 
real_wf, 
iff_weakening_equal, 
subtype_rel_sets_simple, 
true_wf, 
squash_wf, 
equal_wf, 
rleq_weakening_rless, 
int_seg-case, 
rless-int-fractions, 
rless-cases, 
istype-less_than, 
nat_plus_properties, 
istype-false, 
equipollent_inversion, 
nat_plus_subtype_nat, 
nsub_finite, 
finite-product, 
rless_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_seg_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
mdist_wf, 
rleq_wf, 
nat_plus_wf, 
int_seg_wf, 
istype-universe, 
metric_wf, 
meq_wf, 
subtype_rel_self, 
finite_wf, 
mk-metric-space_wf, 
mcomplete_wf, 
mcompact_wf, 
istype-nat, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
metric-on-subtype, 
Error :stable-union_wf, 
m-TB-iff, 
mcomplete-stable-union
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
hyp_replacement, 
spreadEquality, 
inlFormation_alt, 
applyLambdaEquality, 
dependent_pairEquality_alt, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
imageElimination, 
inrFormation_alt, 
closedConclusion, 
productIsType, 
functionExtensionality, 
universeEquality, 
instantiate, 
functionIsType, 
promote_hyp, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
addEquality, 
natural_numberEquality, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
setIsType, 
setEquality, 
setElimination, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
sqequalRule, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
independent_pairFormation, 
rename, 
independent_functionElimination, 
independent_isectElimination, 
lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
            finite(T)
            {}\mRightarrow{}  mcomplete(X  with  d)
            {}\mRightarrow{}  (\mforall{}i:T.  mcompact(\{x:X|  P[i;x]\}  ;d))
            {}\mRightarrow{}  T
            {}\mRightarrow{}  mcompact(stable-union(X;T;i,x.P[i;x]);d) 
            supposing  \mforall{}i:T.  \mforall{}x,y:X.    (P[i;x]  {}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[i;y])
Date html generated:
2019_10_30-AM-07_14_15
Last ObjectModification:
2019_10_25-PM-09_57_41
Theory : reals
Home
Index