Nuprl Lemma : mcomplete-stable-union

[X:Type]. ∀[d:metric(X)]. ∀[T:Type]. ∀[P:T ⟶ X ⟶ ℙ].
  finite(T)  mcomplete(X with d)  (∀i:T. mcompact({x:X| P[i;x]} ;d))  mcomplete(stable-union(X;T;i,x.P[i;x]) with \000Cd) 
  supposing ∀i:T. ∀x,y:X.  (P[i;x]  y ≡  P[i;y])


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) mcomplete: mcomplete(M) mk-metric-space: with d meq: x ≡ y metric: metric(X) finite: finite(T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  m-closed-subspace: m-closed-subspace(X;d;A) mcompact: mcompact(X;d) rless: x < y sq_exists: x:A [B[x]] mconverges-to: lim n→∞.x[n] y rge: x ≥ y surject: Surj(A;B;f) biject: Bij(A;B;f) rneq: x ≠ y sq_type: SQType(T) ge: i ≥  rev_uimplies: rev_uimplies(P;Q) true: True subtract: m uiff: uiff(P;Q) cand: c∧ B less_than': less_than'(a;b) decidable: Dec(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) pi1: fst(t) squash: T less_than: a < b guard: {T} nat_plus: + rev_implies:  Q le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} nat: equipollent: B finite: finite(T) iff: ⇐⇒ Q istype: istype(T) and: P ∧ Q metric: metric(X) so_lambda: λ2y.t[x; y] false: False not: ¬A or: P ∨ Q prop: so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2x.t[x] exists: x:A. B[x] mconverges: x[n]↓ as n→∞ stable-union: Error :stable-union,  subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x] mk-metric-space: with d mcomplete: mcomplete(M) implies:  Q uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  rleq_weakening_rless set-metric-subspace m-closed-iff-complete compact-dist-zero rleq_antisymmetry compact-dist-nonneg not-rless mdist-symm req_weakening rleq_functionality rless_irreflexivity rless_transitivity1 rless-int-fractions int_term_value_add_lemma itermAdd_wf int_term_value_mul_lemma itermMultiply_wf rleq-int-fractions rleq_weakening_equal rleq_functionality_wrt_implies iff_weakening_equal true_wf squash_wf equal_wf subtype_rel_sets_simple nat_properties rless-int decidable__equal_int lelt_wf subtype_base_sq le_weakening le_functionality imax_ub le_witness_for_triv int_formula_prop_eq_lemma intformeq_wf imax_nat_plus int_term_value_subtract_lemma itermSubtract_wf imax_wf le-add-cancel2 add-commutes add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 decidable__le istype-false int_seg_subtype subtype_rel_function nat_plus_properties int_formula_prop_not_lemma intformnot_wf decidable__lt le_wf primrec-wf2 istype-less_than istype-le subtract_wf nat_plus_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties mdist_wf nat_plus_inc_int_nzero int_nzero-rational int-subtype-rationals equal_functionality_wrt_subtype_rel2 int_subtype_base istype-int less_than_wf set_subtype_base rationals_wf equal-wf-base not_functionality_wrt_implies rneq-int rdiv_wf rleq_wf int_seg_wf equipollent_inversion compact-dist-positive istype-universe metric_wf meq_wf finite_wf mk-metric-space_wf mcomplete_wf metric-on-subtype subtype_rel_self mcompact_wf mcauchy_wf istype-nat real_wf subtype_rel_dep_function Error :stable-union_wf,  mconverges-to_wf istype-void not_wf exists_wf all_wf or_wf double-negation-hyp-elim compact-dist_wf int-to-real_wf rless_wf Error :not-not-finite-all-or-exists,  nat_wf
Rules used in proof :  imageMemberEquality inrFormation_alt cumulativity inlFormation_alt applyLambdaEquality multiplyEquality minusEquality addEquality independent_pairFormation isect_memberEquality_alt int_eqEquality approximateComputation equalityIstype imageElimination baseClosed intEquality promote_hyp voidElimination universeEquality instantiate functionEquality productIsType functionIsType unionIsType unionElimination productEquality universeIsType setIsType independent_isectElimination because_Cache setEquality natural_numberEquality closedConclusion isectElimination dependent_set_memberEquality_alt dependent_pairFormation_alt productElimination independent_functionElimination extract_by_obid introduction equalitySymmetry equalityTransitivity inhabitedIsType rename setElimination lambdaEquality_alt hypothesisEquality applyEquality functionExtensionality thin dependent_functionElimination hypothesis cut sqequalRule sqequalHypSubstitution lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
    finite(T)
    {}\mRightarrow{}  mcomplete(X  with  d)
    {}\mRightarrow{}  (\mforall{}i:T.  mcompact(\{x:X|  P[i;x]\}  ;d))
    {}\mRightarrow{}  mcomplete(stable-union(X;T;i,x.P[i;x])  with  d) 
    supposing  \mforall{}i:T.  \mforall{}x,y:X.    (P[i;x]  {}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[i;y])



Date html generated: 2019_10_30-AM-07_13_50
Last ObjectModification: 2019_10_25-PM-06_54_56

Theory : reals


Home Index