Nuprl Lemma : m-closed-iff-complete

[X:Type]
  ∀d:metric(X)
    (mcomplete(X with d)  (∀[A:Type]. (metric-subspace(X;d;A)  (m-closed-subspace(X;d;A) ⇐⇒ mcomplete(A with d)))))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) m-closed-subspace: m-closed-subspace(X;d;A) metric-subspace: metric-subspace(X;d;A) mk-metric-space: with d metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  mcauchy: mcauchy(d;n.x[n]) pi1: fst(t) req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) squash: T sq_stable: SqStable(P) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  nat: or: P ∨ Q rneq: x ≠ y nat_plus: + sq_exists: x:A [B[x]] mconverges-to: lim n→∞.x[n] y m-closed-subspace: m-closed-subspace(X;d;A) exists: x:A. B[x] mconverges: x[n]↓ as n→∞ mk-metric-space: with d mcomplete: mcomplete(M) guard: {T} rev_implies:  Q iff: ⇐⇒ Q prop: istype: istype(T) cand: c∧ B strong-subtype: strong-subtype(A;B) uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B member: t ∈ T metric: metric(X) and: P ∧ Q metric-subspace: metric-subspace(X;d;A) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  int_term_value_subtract_lemma subtract_wf m-unique-limit radd-int-fractions mul_nat_plus mul_bounds_1b rleq-int-fractions radd_functionality radd_functionality_wrt_rleq mdist-triangle-inequality istype-le int_term_value_mul_lemma itermMultiply_wf istype-less_than int_term_value_add_lemma itermAdd_wf real_term_value_const_lemma real_term_value_var_lemma real_term_value_sub_lemma real_polynomial_null req_weakening mdist-symm rleq_functionality req-iff-rsub-is-0 itermSubtract_wf rleq_weakening rleq_weakening_equal int_formula_prop_le_lemma intformle_wf decidable__le rleq_functionality_wrt_implies rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties nat_properties rless-int rdiv_wf mdist_wf sq_stable__rleq nat_plus_wf mconverges-to_wf istype-nat mcauchy_wf nat_wf istype-universe metric_wf metric-subspace_wf mk-metric-space_wf mcomplete_wf m-closed-subspace_wf int-to-real_wf req_wf radd_wf rleq_wf real_wf subtype_rel_dep_function
Rules used in proof :  multiplyEquality dependent_set_memberFormation_alt equalityIstype addEquality promote_hyp imageElimination baseClosed imageMemberEquality voidElimination isect_memberEquality_alt int_eqEquality approximateComputation unionElimination inrFormation_alt closedConclusion dependent_pairFormation_alt equalitySymmetry equalityTransitivity independent_functionElimination functionExtensionality dependent_functionElimination universeEquality instantiate natural_numberEquality functionIsType productIsType independent_pairFormation inhabitedIsType because_Cache independent_isectElimination universeIsType hypothesis functionEquality lambdaEquality_alt sqequalRule isectElimination extract_by_obid introduction applyEquality hypothesisEquality dependent_set_memberEquality_alt rename setElimination thin productElimination sqequalHypSubstitution cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)
        {}\mRightarrow{}  (\mforall{}[A:Type].  (metric-subspace(X;d;A)  {}\mRightarrow{}  (m-closed-subspace(X;d;A)  \mLeftarrow{}{}\mRightarrow{}  mcomplete(A  with  d)))))



Date html generated: 2019_10_30-AM-06_49_51
Last ObjectModification: 2019_10_23-PM-07_07_13

Theory : reals


Home Index