Nuprl Lemma : clear-denominator1
∀[a,b,c,d:ℝ].  uiff(((a/b) * c) = d;(c * a) = (d * b)) supposing b ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
req_wf, 
rdiv_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rmul_preserves_req, 
rinv_wf2, 
req-implies-req, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rmul-rinv3, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
dependent_functionElimination, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    uiff(((a/b)  *  c)  =  d;(c  *  a)  =  (d  *  b))  supposing  b  \mneq{}  r0
 Date html generated: 
2017_10_03-AM-08_38_24
 Last ObjectModification: 
2017_07_28-AM-07_30_36
Theory : reals
Home
Index