Nuprl Lemma : continuous-composition-from-maps-compact
∀I,J:Interval. ∀f:I ⟶ℝ. ∀g:J ⟶ℝ.
  (maps-compact(I;J;x.f[x]) ⇒ f[x] continuous for x ∈ I ⇒ g[x] continuous for x ∈ J ⇒ g[f[x]] continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
maps-compact: maps-compact(I;J;x.f[x]), 
continuous: f[x] continuous for x ∈ I, 
rfun: I ⟶ℝ, 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
continuous: f[x] continuous for x ∈ I, 
member: t ∈ T, 
maps-compact: maps-compact(I;J;x.f[x]), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rless: x < y, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top
Lemmas referenced : 
small-reciprocal-real, 
rless_wf, 
int-to-real_wf, 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
continuous_wf, 
real_wf, 
i-member_wf, 
maps-compact_wf, 
rfun_wf, 
interval_wf, 
istype-less_than, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
i-member-approx, 
rless_transitivity2, 
rleq_weakening_rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
rename, 
cut, 
hypothesis, 
setElimination, 
introduction, 
extract_by_obid, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
setIsType, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
productIsType, 
functionIsType, 
because_Cache, 
closedConclusion, 
independent_isectElimination, 
inrFormation_alt, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp
Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g:J  {}\mrightarrow{}\mBbbR{}.
    (maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  J
    {}\mRightarrow{}  g[f[x]]  continuous  for  x  \mmember{}  I)
 Date html generated: 
2019_10_30-AM-07_47_14
 Last ObjectModification: 
2018_11_12-AM-10_54_20
Theory : reals
Home
Index