Nuprl Lemma : continuous-id

[I:Interval]. continuous for x ∈ I


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I interval: Interval uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] continuous: f[x] continuous for x ∈ I all: x:A. B[x] sq_exists: x:{A| B[x]} member: t ∈ T nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  interval_wf icompact_wf set_wf nat_plus_wf less_than_wf all_wf real_wf i-approx_wf i-member_wf rsub_wf rabs_wf rleq_wf int_term_value_mul_lemma itermMultiply_wf rless-int-fractions2 rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_set_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis setElimination rename hypothesisEquality independent_isectElimination sqequalRule inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll multiplyEquality productEquality functionEquality dependent_set_memberEquality

Latex:
\mforall{}[I:Interval].  x  continuous  for  x  \mmember{}  I



Date html generated: 2016_05_18-AM-09_10_36
Last ObjectModification: 2016_01_17-AM-02_36_51

Theory : reals


Home Index