Nuprl Lemma : functions-equal-on-interior

a:ℝ. ∀b:{b:ℝa < b} . ∀f,g:[a, b] ⟶ℝ.
  ((∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (f(x) f(y))))
   (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g(x) g(y))))
   (∀x:{x:ℝx ∈ (a, b)} (f(x) g(x)))
   (∀x:{x:ℝx ∈ [a, b]} (f(x) g(x))))


Proof




Definitions occuring in Statement :  r-ap: f(x) rfun: I ⟶ℝ rooint: (l, u) rccint: [l, u] i-member: r ∈ I rless: x < y req: y real: all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  rooint: (l, u) rccint: [l, u] i-member: r ∈ I so_apply: x[s] so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q implies:  Q top: Top member: t ∈ T subinterval: I ⊆  all: x:A. B[x] squash: T sq_stable: SqStable(P) or: P ∨ Q rneq: x ≠ y exists: x:A. B[x]
Lemmas referenced :  rfun_wf r-ap_wf req_wf rooint_wf all_wf rccint_wf i-member_wf set_wf real_wf rless_wf rleq_weakening_rless member_rccint_lemma member_rooint_lemma interior-dense-in-interval functions-equal-on-dense exists_wf rneq_wf sq_stable__rless rleq_wf rleq_weakening_equal
Rules used in proof :  functionEquality independent_functionElimination because_Cache setEquality lambdaEquality productEquality rename setElimination independent_pairFormation independent_isectElimination hypothesisEquality isectElimination productElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality inlFormation dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .  \mforall{}f,g:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f(x)  =  f(y))))
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (g(x)  =  g(y))))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  (a,  b)\}  .  (f(x)  =  g(x)))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (f(x)  =  g(x))))



Date html generated: 2017_10_03-AM-10_21_38
Last ObjectModification: 2017_07_31-PM-00_22_43

Theory : reals


Home Index