Nuprl Lemma : ifun-alt
∀I:Interval. ∀[f:I ⟶ℝ]. (ifun(f;I)) supposing ((∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ ((f x) = (f y)))) and icompact(I))
Proof
Definitions occuring in Statement :
ifun: ifun(f;I)
,
icompact: icompact(I)
,
rfun: I ⟶ℝ
,
i-member: r ∈ I
,
interval: Interval
,
req: x = y
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
apply: f a
Definitions unfolded in proof :
guard: {T}
,
cand: A c∧ B
,
top: Top
,
subinterval: I ⊆ J
,
and: P ∧ Q
,
icompact: icompact(I)
,
squash: ↓T
,
sq_stable: SqStable(P)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
member: t ∈ T
,
implies: P
⇒ Q
,
real-fun: real-fun(f;a;b)
,
ifun: ifun(f;I)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
r-ap: f(x)
Lemmas referenced :
sq_stable__req,
sq_stable__rleq,
member_rccint_lemma,
trivial-subinterval,
sq_stable__icompact,
interval_wf,
rfun_wf,
icompact_wf,
sq_stable__i-member,
r-ap_wf,
all_wf,
right-endpoint_wf,
left-endpoint_wf,
rccint_wf,
i-member_wf,
real_wf,
set_wf,
req_wf
Rules used in proof :
dependent_set_memberEquality,
independent_pairFormation,
voidEquality,
voidElimination,
isect_memberEquality,
productElimination,
imageElimination,
baseClosed,
imageMemberEquality,
independent_functionElimination,
dependent_functionElimination,
functionEquality,
setEquality,
independent_isectElimination,
lambdaEquality,
because_Cache,
hypothesis,
hypothesisEquality,
rename,
setElimination,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
isect_memberFormation,
lambdaFormation,
computationStep,
sqequalTransitivity,
sqequalReflexivity,
sqequalRule,
sqequalSubstitution
Latex:
\mforall{}I:Interval
\mforall{}[f:I {}\mrightarrow{}\mBbbR{}]
(ifun(f;I)) supposing ((\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} ((f x) = (f y)))) and icompact(I))
Date html generated:
2018_07_29-AM-09_40_30
Last ObjectModification:
2018_07_02-PM-00_31_17
Theory : reals
Home
Index