Nuprl Lemma : ifun_subtype_subinterval
∀[I,J:{J:Interval| icompact(J)} ].  {f:I ⟶ℝ| ifun(f;I)}  ⊆r {f:J ⟶ℝ| ifun(f;J)}  supposing J ⊆ I 
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I), 
subinterval: I ⊆ J , 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
interval: Interval, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
subinterval: I ⊆ J , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rbetween: x≤y≤z, 
icompact: icompact(I), 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
top: Top, 
cand: A c∧ B, 
guard: {T}
Lemmas referenced : 
rfun_subtype, 
ifun_wf, 
sq_stable__icompact, 
rfun_wf, 
subinterval_wf, 
set_wf, 
interval_wf, 
icompact_wf, 
left-endpoint_wf, 
i-member-compact, 
rbetween_wf, 
right-endpoint_wf, 
rleq_weakening_equal, 
icompact-endpoints-rleq, 
member_rccint_lemma, 
rleq_transitivity, 
rleq_wf, 
req_wf, 
real_wf, 
i-member_wf, 
rccint_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
promote_hyp, 
voidElimination, 
voidEquality, 
productEquality
Latex:
\mforall{}[I,J:\{J:Interval|  icompact(J)\}  ].    \{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}    \msubseteq{}r  \{f:J  {}\mrightarrow{}\mBbbR{}|  ifun(f;J)\}    supposing  J  \msubseteq{}  I  
 Date html generated: 
2016_10_26-AM-09_48_58
 Last ObjectModification: 
2016_08_22-AM-11_38_04
Theory : reals
Home
Index